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ABSTRACT

In this paper we address the design of a multiple transmit antenna
system in which the Channel State Information (CSI) at the trans-
mitter is not perfect. Two different approaches are analyzed: one
based on the Minimization of the Mean Square Error (MMSE) and
the other based on the application of the Maximum Likelihood Se-
quence Estimation (MLSE). In both cases a Bayesian criterion is
used in order to take into account the error between the CSI and
the real channel. Finally, some simulation results and conclusions
are provided, showing which is the gain of these approaches when
the error between the CSI and the real channel is either Gaussian
or uniform, where this last case corresponds to a quantization of
the channel time response in order to transmit the CSI through a
feedback channel from the receiver to the transmitter.

1. INTRODUCTION

Spatial diversity is an efficient method so as to combat the impair-
ments present in the wireless channel. In cellular communications
or Wireless LAN’s the receive antenna diversity is not attractive
for the downlink channel because the mobile station should be
equipped with multiple receive antennas. For this reason, the use
of transmit antenna diversity for the downlink is more desirable.

Existing transmission schemes for exploiting the potential of-
fered by transmit antenna arrays are generally concerned with in-
creasing the diversity order. There are several examples of such
techniques, such as the delay diversity strategy, a special case of a
more general solution presented in [1]. Other possible approaches
that increase the diversity order consist in the application of space-
time coding, technique presented in works such as [2] and [3].

Space-time codes do not exploit channel knowledge at the
transmitter. Information about the channel, if available, should
be used to improve the performance by means of optimal terminal
filtering. It can be shown that under a zero forcing criterion, the
maximization of the Signal to Noise Ratio (SNR) results in a de-
coupled or spatially scalable solution where each transmit branch
can be designed independently. Fig. 1 shows a generalized archi-
tecture that allows a normalization of the filters dynamic, while
the beamforming weights fwqgQq=1 are in charge of adjusting the
transmit power. Modulation can be seen as a quantization process
and its effects can be studied as quantization noise. This quanti-
zation at the output of each filter avoids instabilities, and so, IIR
designs could also be used. By departing from this architecture,
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Fig. 1. Transmission diversity architecture.

a clear trade-off between optimality and crucial aspects like ro-
bustness, practicality, soft-degradation of the QoS, reliability, etc.
can be easily taken into account. Concerning practical consider-
ations, partial and quantized Channel State Information (CSI) at
the transmitter can be introduced in a natural way by adapting, for
instance, each complex weight wq to the strongest channel path
at each branch or, if a controlled unitary dynamic is desired, just
by compensating the phase of the strongest path. To sum up, ro-
bustness [4] implies insensitivity to deviations from the theoretical
assumptions, being the imperfect CSI one of the possible sources
of deviation.

So far we have commented on transmitter design based either
on coding or linear processing depending on the channel knowl-
edge, and how imperfections or bad knowledge can be taken into
account by resorting to robust architectures. Another alternative
existing in the literature for incorporating bad channel knowledge
in transmit space-time processing is by means of a Bayesian point
of view, that is, modeling the side channel information using a
purely statistical approach. Previous and related work includes the
performance analysis of [5] for flat fading channels or the design
proposed in [6] for OFDM systems. In [7] the benefits of trans-
mit beamforming and orthogonal space-time block coding for flat
fading channels are combined. [8] considers the error in the CSI
from a MAXMIN point of view different from the Bayesian one.
In this paper we analyze the general case of a frequency selec-
tive channel and propose two space-time processing solutions that
follow the Bayesian approach in order to incorporate the error in
the CSI. Simulations compare the proposed techniques with space-
time processing designs that assume perfect CSI and schemes that
do not need CSI such as delay diversity. Although the Bayesian
approach will either result in spatially non-scalable solutions, or
non-robust when the statistical assumptions are not true, it serves
as a useful benchmark to analyze and compare the commented ro-
bust architectures.
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Fig. 2. General scheme for transmit diversity with feedback chan-
nel and imperfect CSI at the transmitter.

2. PRE-FILTERING WITH FEEDBACK CHANNEL

In this section we focus our attention on the case of a real system in
which a digital feedback channel is implemented from the receiver
to the transmitter. The single-antenna receiver is responsible for
estimating the channel, quantize this estimate, code it into a digi-
tal format and send it to the transmitter via the feedback channel.
By means of this, the transmitter has an estimate of the channel,
possibly imperfect CSI. In this work we exploit this CSI in order
to design linear filters at the transmitter from a Bayesian point of
view and without forcing the design to be spatially scalable. The
general scheme is presented in Fig. 2. Our goal is to design the
filters fzqgQq=1 for the Q transmit antennas taking into account the
imperfections in the CSI at the transmitter.

2.1. System and Signal Models

Let us consider a frequency selective channel with Q transmit
antennas, where each of the channels in the Multi-Input-Single-

Output (MISO) link has L taps. hq =

h
h
(q)

1
h
(q)

2
� � �h(q)

L

i
T

represents the time impulse response for the qth transmit antenna.
It is possible to collect all these time impulse responses in a sin-
gle vector h by means of this notation: h =

�
h
T

1 h
T

2 � � �hTQ
�
T

,
where the number of components of h isK = QL. The channel is
modeled as a complex random Gaussian vector, where its covari-
ance matrixRh collects the spatial correlation and the power delay
profile of the channel. In case that there is a direct line of sight,
then these random vector would have a certain mean m different
from zero. Therefore, the Probability Density Function (PDF) of
the channel follows the statistical law: h � G (m;Rh).

Our goal is to design the transmit filters while considering very
simple detectors at the receiver. As it is seen in Fig. 2, two possible
receivers are considered: a symbol-by-symbol detector and a Max-
imum Likelihood Sequence Detector (MLSE) based on the appli-

cation of the Viterbi algorithm. Let zq =
h
z
(q)

1
z
(q)

2
� � � z(q)

M

i
T

be the time M -taps impulse response of the qth transmit filter.
Once again, it is possible to represent in a single vector z all these
filters: z =

�
z
T

1 z
T

2 � � � zTQ
�T

. In the design of the transmit fil-
ters, the following transmit power constraint must be fulfilled:

kzk2 = z
H
z = Pt (1)

At the transmitter side, only a channel estimate bh or partial
CSI is available. � represents the error between the channel esti-
mate bh and the real channel realization h: bh = h + �. In the
considered system, this channel error is due to the own estimation
process at the receiver and/or the quantization of the channel es-
timate so that it can be transmitted through the feedback channel
from the receiver to the transmitter. In general, we model this error
statistically by means of its PDF, which is assumed to be known:
f�(�). In case that no quantization is carried out, then the statistics
of the error would usually correspond to a Gaussian PDF, whereas
in case that only quantization is considered, the PDF would be uni-
form. By making use of this notation, it is possible to formulate the
PDF of bh conditioned to the real channel realization h as follows:
f
bhjh(

b
hjh) = f�(

b
h� h).

3. SYSTEM DESIGNS

In this section we present the two considered design strategies.
The first one corresponds to a symbol-by-symbol detector based
on the Minimum Mean Square Error (MMSE) criterion, whereas
the other one makes use of a MLSE detector by means of the ap-
plication of the Viterbi algorithm.

3.1. Symbol-by-Symbol Detector

When applying a symbol-by-symbol detector at the receiver, an ad-
equate design criterion is MMSE, as it takes into account the noise
power and also the signal distortion or Inter Symbol Interference
(ISI). In case that the CSI was perfect, the equivalent channel im-
pulse response at the receiver would be almost equalized. As this
is not the case in a real scenario, we add a filter heq at the receiver
responsible for equalizing the residual ISI. When designing this
filter, the MMSE criterion is considered and it is assumed that the
real channel impulse response h is known at the receiver, as it is
also assumed in [7].

�(h; bh) is the Mean Square Error (MSE) for a concrete chan-
nel h and for a concrete collection of filters z(bh) and gain factor
at the receiver aR(bh):

�(h; bh) = 


a�R(bh)Hz(bh)� 1


2 + jaR(bh)j2�2w (2)

where it is assumed that the symbols s(n) are normalized so that
E
�js(n)j2	 = 1, H =

�
H1H2 � � �HQ

�
is a matrix contain-

ing all the Toeplitz convolution matrices fHqgQq=1 corresponding

to the Q channels fhqgQq=1, 1 is an all-zeros vector except a 1 in
a position representing the desired temporal response of the equal-
ized channel a�RHz, and �2w represents the power of the Additive
White Gaussian Noise (AWGN) at the receiver. The convolution
matrixHq is defined as the (M+L�1)�M dimensional Toeplitz
matrix, where the first row is an all-zeros vector except the first el-
ement which is equal to h(q)

1
, and the first column is an all-zeros

vector except the firstL elements which are equal to the vector hq .
Our goal is to design the filters so as to minimize the MSE

averaged over the real channel statistics and the error statistics.
This can be expressed as follows:

� =

Z
f
bh
(bh)�(bh)dbh (3)

�(bh) = E
hjbh

n
�(h; bh)jbho =

Z
�(h; bh)f

hjbh(hjbh)dh
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As the filters z and gain factor aR depend only on the channel
estimate bh, the minimization of � is equivalent to the minimization
of �(bh) subject to the transmit power constraint (1). The optimum
solution corresponds to the following equalities:

z(bh) = �

�
X+

�
2

w

Pt
I

��1

M
H
1 (4)

aR(
b
h) =

1
H
Mz

z
H
Xz+ �2w

(5)

where � is a constant such that the transmit power constraint (1) is

fulfilled, X(bh) = E
hjbh

n
H
H
Hjbho and M(bh) = E

hjbh

n
Hjbho.

In general it is difficult to obtain closed expressions of X and M.
In the Appendix we show how to obtain a closed expression for
the case in which the error � is assumed to be Gaussian.

3.2. MLSE Detector

It is also possible to use other kind of detectors with a higher com-
putational load but with a better performance, such as the MLSE
based on the Viterbi algorithm (see Fig. 2). This detector is the
optimum one in case that the channel is known with no error at
the receiver, which corresponds with our assumptions and as pre-
sented in [7]. The performance of this detector is directly related
to the SNR, which is defined as follows:

SNR(h; bh) = 1

�2w

z
H
(bh)HH

Hz(bh) (6)

where it is assumed thatE
�js(n)j2	 = 1 and z andH are defined

as in the previous subsection. Our goal is to maximize the SNR
averaged over the real channel statistics and the error statistics.
This can be expressed as follows:

SNR =

Z
f
bh
(bh)SNR(bh)dbh (7)

SNR(bh) = E
hjbh

n
SNR(h; bh)jbho =

Z
SNR(h; bh)f

hjbh(hjbh)dh
The maximization of the SNR is equivalent to the maximiza-

tion of SNR(bh) subject to the power constraint (1). The solution
to this optimization problem is found as an eigenvector problem:

z(bh) =

p
Ptu (8)

�maxu = Xu; kuk = 1 (9)

where the matrixX is defined as in the previous subsection: X(bh) =
E
hjbh

n
H
H
Hjbho. A closed expression of this matrix is presented

in the Appendix when the error � is assumed to be Gaussian.
It can be shown that this design criterion is equivalent to the

minimization of the error power Pe = E
�je(n)j2	. The equiv-

alent time impulse response to be used when applying the Viterbi
algorithm is: hD = a

�
RHz. The gain factor aR is arbitrary and

does not affect the performance of the system. Usually, aR is cal-
culated so that the mean power at the input of the MLSE block
is normalized to the unity. It must be said that in this section we
assume that the Viterbi decoder admits any length of the equiva-
lent response hD , and therefore, the complexity and computational
load can be very high. Further work will analyze other kinds of de-
tectors based on MLSE but with a lower computational complexity
by means of a shortening of hD.
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Fig. 3. Simulations results for the MMSE technique.
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Fig. 4. Simulations results for the techniques based on a MLSE
receiver.

4. SIMULATION RESULTS AND CONCLUSIONS

In this section we present some simulations that help to understand
the benefits of using the designs presented in this work. We have
simulated normalized channels (E

�khqk2	 = 1) with a delay
spread of 3 symbol periods, an angular spread of 30o and BPSK
symbols. The length L of the channel for the MMSE technique is
5, whereas for the case of MLSE is 3.

In Fig. 3 we present some results for the MMSE technique,
in which the receiver is based on a symbol-by-symbol detector.
The transmit filters zq have 7 taps, whereas heq has 10 taps. In
these simulations, we have always made use of the mathematical
expressions presented in the Appendix, i. e., we have assumed
that the error is Gaussian. Two different situations have been an-
alyzed. The first one corresponds to an error which is actually
Gaussian, whereas in the second case the error is due to the quan-
tization of the channel impulse response, so, in this last case, the
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statistical model of the error does not correspond with the reality.
We have simulated different powers of the Gaussian error and dif-
ferent number of bits to carry out the quantization (the number of
bits in the figure represents the number of bits with which each tap
of the channel is quantized). As it can be seen, the solution that
does not take into account the error in the CSI and assumes that
the channel estimate is perfect, is not able to decrease the BER al-
though the SNR is increased, whereas in the case of the solution
based on the Bayesian point of view (Eq. (4)), the BER decreases
as the SNR increases. It can be also concluded that, although for
the case of quantization the error model does not correspond with
the real statistics, the Bayesian design is able to increase the per-
formance in front of the non-statistical based solution, that is, the
solution that assumes that the CSI is perfect.

In Fig. 4 the equivalent results for the MLSE technique are
presented for 4 antennas and a Gaussian channel estimation error.
The transmit filters have only 1 tap. We have also made compar-
isons between this solution, which needs CSI, and the delay di-
versity technique for 1 and 4 antennas, also detected by means of
MLSE (Viterbi). Delay diversity is a linear precoding technique
that does not need any CSI at the transmitter. As it can be seen,
in this case the gains obtained by means of the Bayesian approach
are less important than the ones obtained with the MMSE tech-
nique. The reason for it is that the Viterbi decoder is not sensi-
tive to non-equalized channels and that the gains of mean SNR by
means of the Bayesian approach are not extremely important and
do not have a direct impact on the BER. It can be also concluded
that, although the noise power in the CSI is very high and the qual-
ity of the channel estimate is very bad, the solution based on the
MLSE technique permits increasing importantly the performance
of the delay diversity scheme.

5. APPENDIX

In this Appendix we deduce the expressions corresponding to the
matricesM(bh) andX(bh) when the error � is assumed to be Gaus-
sian with the following PDF: � � G (0;�). Under this assump-
tion it can be easily proved that bhjh � G (h;�) and hjbh �
G (t;C), where t and C are defined as follows:

C =

�
R
�1
h

+�
�1��1 (10)

t = C

�
R
�1
h
m+�

�1b
h

�
(11)

Deduction ofM: let us write the vector t = E
hjbh

n
hjbho de-

fined in (11) as follows: t =

�
t
T

1 t
T

2 � � � tTQ
�
T

, where tq =h
t
(q)

1
t
(q)

2
� � � t(q)

L

i
T

and t
(q)

l
= E

hjbh

n
h
(q)

l
jbho. The matrix

M(bh) is defined as M =

�
M1M2 � � �MQ

�
, where Mq =

E
hjbh

n
Hq jbho is the conditioned mean of the Toeplitz convolu-

tion matrix Hq associated to the channel corresponding to the qth
transmit antenna. The matrixMq is the (M+L�1)�M Toeplitz
convolution matrix, where the first row is an all-zeros vector ex-
cept the first element which is equal to t(q)

1
, and the first column is

an all-zeros vector except the first L elements which are equal to
the vector tq .

Deduction of X: let us write the matrix defined in (10) C =

E
hjbh

n
(h� t)(h� t)H jbho as:

C =

2
64
C
(1)(1) � � � C

(1)(Q)

...
. . .

...
C
(Q)(1) � � � C

(Q)(Q)

3
75 (12)

where C(q1)(q2) = E
hjbh

n
(hq1 � tq1 )(hq2 � tq2)H jbho. The

matrix X(bh) is defined as:

X =

2
64
R
(1)(1) � � � R

(1)(Q)

...
. . .

...
R
(Q)(1) � � � R

(Q)(Q)

3
75 (13)

where R(q1)(q2) = E
hjbh

n
H
H

q1
Hq2

jbho is a M �M matrix. Leth
R
(q1)(q2)

i
m;n

represent the (m;n)th component ofR(q1)(q2). It

can be deduced that this component is calculated as follows:

L+m�nX
l=1

h
C
(q2)(q1)

i
l;l+n�m

+ t
(q1)�
l+n�mt

(q2)

l
; m � n (14)

L+n�mX
l=1

h
C
(q2)(q1)

i
l+m�n;l

+ t
(q1)�
l

t
(q2)

l+m�n; m > n (15)

By means of these equalities and relationships, the final ex-
pression of the matrix X(bh) can be obtained.
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