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ABSTRACT

Adaptive modulation improves the system throughput consider-
ably by matching transmitter parameters to time-varying wireless
fading channels. Crucial to adaptive modulation is the quality of
channel state information (CSI) at the transmitter. In this paper, we
consider a channel predictor based on pilot symbol assisted mod-
ulation (PSAM) for multi-input multi-output (MIMO) Rayleigh
fading channels. We analyze the impact of the channel predic-
tion error on the bit error rate (BER) performance of an adaptive
system assuming perfect CSI. Our numerical results reveal the crit-
ical value of the normalized prediction error, below which the pre-
dicted channels can be treated as perfect by the adaptive modula-
tor; otherwise, explicit consideration of the channel imperfection
must be accounted for at the transmitter.

1. INTRODUCTION

By matching transmitter parameters to time-varying channel con-
ditions, adaptive modulation increases the system throughput con-
siderably, which justifies its popularity in future high-rate wireless
applications; see [1, 4, 5] and references therein. Critical to adap-
tive modulation is the quality of channel state information (CSI)
at the transmitter, that is obtained through feedback. Due to the
transmission delay and the processing delay both at the transmitter
and at the receiver, the delayed CSI feedback at the transmitter be-
comes outdated, unless the channel variations are sufficiently slow.
Taking into account the feedback delay, an effective approach in
adaptive systems is to predict the channel values at future times
when they will be used, and feed those predicted channels back to
the transmitter [3].

Adaptive designs assuming perfect CSI perform well only
when CSI imperfections induced by channel estimation errors
and/or feedback delays are limited [1]. For general Nakagami fad-
ing channels, the BER performance was analyzed in [1] for single
antenna systems with delayed but noiseless channel estimates. For
Rayleigh fading channels, BER performance analysis was carried
out in [6] for systems equipped with single transmit- and multiple-
receive antennas, based on noisy predicted channels.

In this paper, we investigate an adaptive system with mul-
tiple transmit and multiple receive antennas, where each infor-
mation symbol is transmitted across multiple transmit-antennas
using beamforming. Based on the minimum-mean-square-error
(MMSE) channel predictor in [9], we analyze the impact of chan-
nel prediction error on the BER performance of adaptive MIMO
systems. With an arbitrary number of transmit- and receive- anten-
nas, we obtain a closed-form BER expression that requires multi-
level integration. We also derive simple closed-form expressions,
when the minimum number of transmit- and/or receive- antennas
is less than or equal to two.

This work was supported by the NSF grant no. 0105612, and by the
ARL/CTA grant no. DAAD19-01-2-011.

Notation: Bold upper (lower) letters denote matrices (column
vectors); (·)∗, (·)T and (·)H denote conjugate, transpose, and Her-
mitian transpose, respectively; E{·} stands for expectation, and
δ(·) for Kronecker’s delta; IK denotes the identity matrix of size
K; 0K×P denotes an all-zero matrix of size K × P ; The special
notation h ∼ CN (h,Σh) indicates that h is complex Gaussian
distributed with mean h, and covariance matrix Σh.

2. SYSTEM MODELING AND CHANNEL PREDICTION

We consider an adaptive system equipped with multiple transmit-
and receive- antennas, as depicted in Fig. 1. Based on CSI ob-
tained from the feedback channel, the transmitter optimally varies
its modulation parameters, as will be detailed in Section 3. To as-
sist the receiver in performing channel estimation and symbol de-
tection, known pilot symbols are periodically inserted at the trans-
mitter — a technique that is known as pilot symbol assisted mod-
ulation (PSAM) [2]. At the receiver, the samples corresponding to
the known pilots are extracted, based on which CSI is interpolated
using optimal Wiener filtering [2]. Coherent detection is then per-
formed for symbol demodulation. To enable adaptive modulation,
the receiver also predicts the channels at a future time, and feeds
the predicted channels back to the transmitter [3, 6].

Let Nt denote the number of transmit antennas, Nr the num-
ber of receive antennas, and hµν(n) the frequency-flat channel be-
tween the µth transmit- and the νth receive-antennae, at time index
n. We collect channel coefficients into the Nt×Nr channel matrix
H(n) having (µ, ν)th entry hµν(n). Let xµ(n) denote the trans-
mitted symbol from the µth antenna at time n. The received signal
at the νth receive antenna can then be expressed as:

yν(n) =

Nt
∑

µ=1

hµν(n)xµ(n) + wν(n), ν ∈ [1, Nr], (1)

where wν(n) denotes zero-mean additive Gaussian noise.
We adopt the following assumptions throughout the paper:

AS0): the channels {hµν(n)}Nt,Nr

µ=1,ν=1 are independent and iden-
tically distributed (i.i.d.) with Gaussian distribution CN (0, 1);
hence, H(n) ∼ CN

(

0Nt×Nr
, NrINt

)

.

AS1): the channels {hµν(n)}Nt,Nr

µ=1,ν=1 are slowly time-varying ac-
cording to Jakes’ model with Doppler spread fd; thus, we have
E{h∗

µν(n)hµν(n′)} = J0(2πfd|n − n′|Ts), ∀µ, ν, where Ts is
the symbol period.
AS2): the additive Gaussian noise is white both in space and time;
i.e., E{w∗

ν(n)wν′(n′)} = N0δ(ν − ν′)δ(n − n′).
Based on AS0)-AS2), an MMSE predictor for the MIMO

channel has been developed in [9] based on PSAM. Specifically,
the data stream is parsed into blocks of length Lb, and Nt known
symbol is inserted per block [9]. Based on the extracted pilot sig-
nals up to block i, the receiver predicts the MIMO channel values
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Fig. 1. The transceiver diagram

Q blocks ahead, where we assume that the feedback delay is a mul-
tiple of the block duration LbTs [9]. Let Ĥ((i+Q)Lb) denote the
predicted channels, and define the corresponding prediction error
matrix Ξ((i + Q)Lb) so that:

H((i + Q)Lb) = Ĥ((i + Q)Lb) + Ξ((i + Q)Lb). (2)

The normalized channel prediction MSE is defined as:

NMSE =
E{‖H((i + Q)Lb) − Ĥ((i + Q)Lb)‖2

F}
E{‖H((i + Q)Lb)‖2

F}
, (3)

where ‖ · ‖F stands for the Frobenius norm. With MMSE predic-
tor, we show in [9] that Ĥ((i + Q)Lb) and Ξ((i + Q)Lb) are
uncorrelated thanks to the orthogonality principle. Furthermore,
we establish that Ĥ((i + Q)Lb) ∼ CN (0Nt×Nr

, Nrρ
2
INt

), and
Ξ((i + Q)Lb) ∼ CN (0Nt×Nr

, Nrσ
2
ε INt

), where

ρ =
√

1 − NMSE, σ2
ε = 1 − ρ2. (4)

3. ADAPTIVE MODULATION WITH PERFECT CSI

Although the predicted channels Ĥ((i + Q)Lb) differ from the
true channels H((i + Q)Lb) as shown in (2), most existing
adaptive transmitters assume the former to be perfect. For no-
tational brevity, we will drop the time index, and denote e.g.,
Ĥ((i + Q)Lb) by Ĥ.

We focus on a multi-antenna transmitter with beamforming,
which is optimal in terms of maximizing the SNR at the receiver,
assuming perfect CSI with Ĥ = H [8]. Specifically, the adap-
tive transmit-beamformer first draws an information symbol s(n)
from a suitable constellation with energy Es, and then transmits
the vector u

∗s(n) across Nt antennas, using the optimal beam-
steering vector u := [u1, . . . , uNt

]T that we will specify soon.
We assume that the channel estimates are error-free at the re-

ceiver, as in [1, 6, 9]. With maximum ratio combining (MRC)
across the Nr receive antennas, the overall SNR is γ =
u
H
HH

H
uEs/N0. Hence, each beamformed information symbol

with MRC at the receiver adheres to an equivalent scalar input-
output relationship:

y(n) = heqvs(n) + w(n), heqv :=
√

uHHHHu. (5)

Let the eigen decomposition of ĤĤ
H be:

Ĥ Ĥ
H = UHDHU

H

H , DH := diag(λ1, λ2, . . . , λNt
), (6)

where UH := [uH,1, . . . ,uH,Nt ] contains Nt eigenvectors, and
DH has the corresponding Nt eigenvalues on its diagonal in a non-
increasing order. With perfect CSI H = Ĥ, the optimal beam-
steering vector u, that maximizes the received SNR, is [9]:

u = uH,1. (7)

Having specified the optimal beam direction, we consider next
the constellation switching module of our adaptive transmitter.
We will adopt N rectangular (and square) quadrature-amplitude-
modulation (QAM) constellations with size Mi = 2i, i =
1, . . . , N [8]. When the channels experience deep fades, we will
allow our adaptive design to suspend data transmission (this will
correspond to setting M0 = 0). Since the adaptive transmitter
sees an equivalent channel in (5) with h2

eqv = λ1 when H = Ĥ,
it partitions the interval [0,∞) into N + 1 disjoint but consecu-
tive regions, with the boundary points denoted as {αi}N+1

i=0 , where
α0 = 0 and αN+1 = ∞. The constellation is then chosen accord-
ing to:

M = Mi, when λ1 ∈ [αi, αi+1). (8)

The overall probability that the constellation Mi is chosen is:

Pr(Mi) = Pr
(

λ1 ∈ [αi, αi+1)
)

=

∫ αi+1

αi

pλ1
(λ1)dλ1, (9)

where pλ1
(λ1) is the probability density function (p.d.f.) of λ1.

The average transmission rate of this adaptive MIMO system is:

R =
Lb − Nt

Lb

N
∑

i=1

log2(Mi) Pr(Mi), (10)

where the spectral efficiency loss incurred by the pilots has been
considered in the numerator.

To specify these boundary points with perfect CSI, we rely on
the approximate BER performance [5, 8]:

BER(Mi, λ1) ≈ 0.2 exp(−λ1giEs/N0), (11)

where the constellation specific constant gi is chosen as: gi =
3/[2(Mi−1)] for square QAM, and gi = 6/(5Mi−4) for rectan-
gular QAM [8]. To maintain a target BER denoted as BERtarget,
the transmitter determines the boundary points as [c.f. (8),(11)]:

αi =
− ln(5 BERtarget)

giEs/N0
, i = 1, . . . , N. (12)

Based on (8) and (11), the average BER for constellation Mi is:

BER(Mi) =

∫ αi+1

αi

BER(Mi, λ1)p(λ1)dλ1. (13)

The overall system BER is the ratio of the number of bits in error
over the total number of transmitted bits, expressed as [1]:

BER =

∑N

i=1 log2(Mi)BER(Mi)
∑N

i=1 log2(Mi) Pr(Mi)
. (14)

Since inside each interval [αi, αi+1), we have BER(Mi, λ1) ≤
BERtarget, we infer that the average BER is guaranteed to be be-
low the target, if indeed the channel prediction is perfect. However,
the actual BER may increase due to the imperfect channel predic-
tion. We next throughly investigate how the BER performance is
affected by the channel prediction errors.

4. BER PERFORMANCE WITH IMPERFECT CSI

For a given realization of Ĥ, the true channel H can be viewed as a
Gaussian random matrix with non-zero mean and white covariance
[c.f. (2)]. Define h̃ := H

H
u = (Ĥ + Ξ)Hu. Conditioned on Ĥ,
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we have h̃ ∼ CN (ĤH
u, σ2

ε INr
). Furthermore, with u = uH,1,

we have ‖ĤH
u‖2 = λ1. For each feedback Ĥ, the average BER,

averaged over all possible H, can be expressed as [9]:

BER(Mi, Ĥ) = 0.2 E
h̃
{exp(−h̃

H
h̃giEs/N0)}. (15)

As we detail in [9], we can simplify (15) to:

BER(Mi, Ĥ) =
0.2

(1 + σ2
ε φi)Nr

exp
(

− λ1φi

1 + σ2
ε φi

)

, (16)

where for brevity, we define

φi = giEs/N0. (17)

As in (13), the average BER for each constellation is:

BER(Mi) =

∫ αi+1

αi

BER(Mi, Ĥ)p(λ1)dλ1. (18)

Plugging (18) into (14), the overall system BER can then be found
in the presence of prediction errors. To calculate the overall BER,
we need to find Pr(Mi) and BER(Mi).

4.1. General Result for MIMO

For ease of notation, we define two constants:

k := min(Nt, Nr), d := |Nt − Nr|. (19)

For systems with Nt transmit- and Nr receive- antennas, there are
at most k non-zero eigenvalues for ĤĤ

H [c.f. (6)]. Let {ξi}k
i=1

denote the ordered eigenvalues of the matrix (1/ρ2)ĤĤ
H, for

which we have λi = ρ2ξi, ∀i ∈ [1, k]. Since each entry of
(1/ρ)Ĥ is Gaussian with distribution CN (0, 1), the joint distri-
bution of the ordered eigenvalues {ξi}k

i=1 is [7]:

p(ξ1, . . . , ξk) = Ck,d exp
(

−
∑

i

ξi

)

∏

i

ξd
i

∏

i<j

(ξi−ξj)
2, (20)

where Ck,d is a normalizing constant.
From (20), we want to find the marginal p.d.f. of ξ1:

p
(k)
ξ1

(ξ1) =

∫ ξ1

0

dξ2 · · ·
∫ ξk−1

0

dξk p(ξ1, . . . , ξk). (21)

Based on p
(k)
ξ1

(ξ1), let us define the integral:

Ψ
(k)
ξ1

(a, x) =

∫ x

0

e−(a−1)ξ1p
(k)
ξ1

(ξ1)dξ1. (22)

Since λ1 = ρ2ξ1, we obtain from (9) and (22):

Pr(Mi) = Ψ
(k)
ξ1

(

1,
αi+1

ρ2

)

− Ψ
(k)
ξ1

(

1,
αi

ρ2

)

. (23)

Plugging (16) into (18), we obtain:

BER(Mi) =
0.2

[

Ψ
(k)
ξ1

(

bi,
αi+1

ρ2

)

− Ψ
(k)
ξ1

(

bi,
αi

ρ2

)]

[1 + (1 − ρ2)φi]Nr

, (24)

where the constant bi is defined as

bi = 1 +
|ρ|2φi

1 + σ2
ε φi

=
1 + φi

1 + (1 − ρ2)φi

. (25)

Plugging (23) and (24) into (10) and (14), we obtain the average
transmission rate, and the average BER. Notice that the evaluation
in (23) and (24) involves k-fold integration, which is numerically
plausible but involved.

We next pursue simple solutions for special cases with k = 1
and k = 2. Let Γ(m) :=

∫

∞

0
tm−1e−tdt denote the Gamma

function with parameter m. With a positive integer m, the nor-
malized incomplete Gamma function is obtained as:

Γ(m, x) :=
1

Γ(m)

∫ x

0

tm−1e−tdt = 1 − e−x

m−1
∑

j=0

xj

j!
. (26)

4.2. Multi-Input Single-Output or Single-Input Multi-Output

We first look at the simple case with k = min(Nt, Nr) = 1, and
d = max(Nt, Nr) − 1. The p.d.f. of ξ1 is deduced from (20) as:

p
(1)
ξ1

(ξ1) =
ξd
1

Γ(d + 1)
exp (−ξ1) . (27)

Plugging (27) into (22), we obtain:

Ψ
(1)
ξ1

(a, x) = a−(d+1)Γ(d + 1, ax). (28)

Setting k = 1 in (23) and (24), we end up with simple closed-
forms for Pr(Mi) and BER(Mi).

4.3. Multi-Input Two-Output or Two-Input Multi-Output

Here we consider the case with k = 2, and d = max(Nt, Nr)−2.
From (20), we have the bi-variate p.d.f.

p(ξ1, ξ2) = C2,de−ξ1−ξ2ξd
1ξd

2(ξ1 − ξ2)
2, (29)

where the normalizing constant is C2,d = [Γ(d + 2)Γ(d + 1)]−1.
Plugging (29) into (21) and (22), we obtain [9]:

Ψ
(2)
ξ1

(a, x) =
(d + 2)

ad+3
Γ(d + 3, ax) − 2(d + 1)

ad+2
Γ(d + 2, ax)

+
(d + 2)

ad+1
Γ(d + 1, ax) − d(d + 1)

(1 + a)d+2
Γ
(

d + 2, (1 + a)x
)

− d + 2

(1 + a)d+1
Γ
(

d + 1, (1 + a)x
)

(30)

−
d

∑

j=0

(d − j)(d − j − 1)(d + j + 2)!

(j + 2)!(1 + a)d+j+3(d + 1)!
Γ
(

d + j + 3, (1 + a)x
)

.

Setting k = 2 in (23) and (24), we again arrive at closed-forms for
Pr(Mi) and BER(Mi).

5. NUMERICAL RESULTS

We choose QAM constellations with sizes {Mi = 2i}8
i=1. We set

BERtarget = 10−3, and fix Lb = 15 when computing the trans-
mission rate using (10). With Es/N0 = 10dB, we plot in Figs. 2
and 3 the dependence on the prediction NMSE of the system BER,
and the transmission rate, respectively. From Fig. 2, we observe
that the BERs remain almost constant when NMSE < 10−2, but
deteriorate quickly when NMSE > 10−2. On the other hand, the
transmission rates remain nearly constant when NMSE < 10−1,
and decrease quickly when NMSE > 10−1, as shown in Fig. 3.
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Fig. 2. BER performance at Es/N0 =10dB

We can now formally answer the question: how accurate
channel prediction needs to be, so that the predicted channels can
be used as if they were perfect. For each Es/N0 and NMSE, we
calculate two BERs: one is BERideal, which is obtained by as-
suming that the true channels coincide with predicted channels,
and the other is BERactual, namely the actual BER in the pres-
ence of prediction error. For each Es/N0, we gradually increase
NMSE from 10−6, and locate the first NMSE value for which:

BERactual = 1.1 BERideal. (31)

Those NMSE values are collected in Fig. 4. Hence, for each an-
tenna configuration, when the actual NMSE is below the corre-
sponding curve in Fig. 4, the transmitter is assured that the actual
BER is off from the BERideal by less than 10%.

In a nutshell, our analytical and numerical results suggest the
following design guidelines for practical adaptive MIMO systems:

G1: For each antenna configuration (Nt, Nr) and operating
SNR (Es/N0), determine from Fig. 4 the critical NMSE value.

G2: Determine the actual NMSE based on various system pa-
rameters, as detailed in [9].

G3: If the actual NMSE is below the critical value, the adap-
tive transmitter can treat the predicted channels as being perfect.
Otherwise, the transmitter needs to figure out the actual BER and
transmission rate, as done in Figs. 2 and 3. Depending on the de-
signer’s judgment on whether these actual BER and rates are ac-
ceptable or not, transmitter designs without, or, with explicit CSI
imperfection considered [4, 8], will be decided for deployment.
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