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ABSTRACT

A novel Multi-User Detection (MUD) technique for
CDMA systems is introduced. The new method is well
suited for cases in which the code cross correlation
matrix is ill -conditioned. In practice this case coincides
with having code lengths approximately equal to the
number of users – a desirable condition in terms of
bandwidth efficiency. Our approach employs an
iterative formulation of a well-known regularization
method for linear inverse problems, which is suited to
the MUD problem. The technique allows knowledge of
the finite set in which the solution belongs to be
exploited in a computationally efficient manner in
order to iteratively improve the quality of the estimate.

1. INTRODUCTION

Since the introduction of the optimal Maximum-
Likelihood (ML) detector (see [3]) a number of lower
complexity classes of detectors have been proposed,
attempting to approach the ML performance in a
computationally and bandwidth efficient manner.
Examples of those detector classes are the linear detectors
(e.g. MMSE and Decorrelator), the linear and non-linear
Interference Cancellation (IC) based detectors (e.g. Serial
and Parallel IC, Decision feedback, Turbo MUD etc.) and
the Subspace Based Linear detectors. A fundamental
difference between the ML detector and the rest is the
explicit use of the prior knowledge regarding the solution
set, which however results in solving an NP-hard
optimization problem.

The proposed detector is based on a well established
method for solving ill-posed linear inverse problems,
namely Tikhonov Regularization1 (TR). The fundamental
idea in TR is to introduce to the Least Squares (LS)
optimization criterion some additional side constraints,
which the desired solution needs to fulfill. Those
constraints need to be chosen carefully not only to be

1 Also known as Ridge Regression in the statistical literature

meaningful but also to be simple enough to allow an
analytical solution to the problem. In section 3 we
demonstrate that the MMSE detector is a special case of
the TR solution to the MUD problem with a particular
choice of the regularization parameter.

The clear distinction between the various constraints that a
TR solution needs to satisfy gives to the method more
design flexibility but also increased difficulties in terms of
determining optimal (in some sense) regularization
parameters. The new detector is based on a particular
formulation of the TR problem in which some prior
solution to the problem is assumed to be known. In
contrast to other detectors, which make use of prior
information, the proposed one does not rely on any
external devices. Instead it uses its own initial estimate in
conjunction with knowledge of the finite solution set in
order to feedback a proposal solution, closer to the true
one, and re-solve the TR problem. This procedure is
repeated iteratively, giving increased importance to the
fed-back solution in each iteration.

2. FORMULATION OF THE BASIC MUD
PROBLEM

In this section a simplified multiuser CDMA model is
developed and the basic MUD problem is formulated.

A discrete time baseband model of a synchronous DS-
CDMA system is considered where U users are active.

Each of the iu ( Ui ≤≤1 ) users transmits a BPSK
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and equal power for each user then the received sequence
can be expressed as:

nsbEr
U

i
iib +⋅⋅= �

=1

(1)

where bE is the energy in each modulated symbol and

n is some sampled (in chip rate) realization of a white

Gaussian process with zero mean and covariance matrix

N
I⋅σ2 . For simplicity the problem will be formulated

involving only with real variables. Extensions for vectors
defined in complex spaces is straight forward.

The received signal is despread by cross-correlating r
with each of the code sequences giving samples

T

ii sry ⋅= each in which the contribution in energy from

user iu is dominant. Nevertheless contributions from the

rest of the users are still significant and a detection scheme
based directly on these samples is characterised by very
poor performance. Instead of treating multiuser
interference as some increase in the noise power
(compared to the single user case), MUD techniques
attempt to reject the interference by processing all the
samples ],..,,[ 21 Uyyyy = collectively. In particular

MUD involves solving an inverse linear problem of the
form:

TTTT vzybR +==⋅ (2)

where R is the UU × code cross-correlation matrix

which is symmetric and positive definite,
],...,,[ 21 Ubbbb = which needs to be determined, z is the

same as y for the case where there is no thermal noise

present and
Tv is a sampled (in symbol level) realisation

of Gaussian process with zero mean and covariance matrix

R⋅σ2 .

2.1. Brief Review of Linear Multiuser Detectors

The simplest linear detection technique solves the
Generalised Least Squares (GLS) problem by assuming
that the solution belongs to an infinite space and
minimizing the cost function:

2

2

1 )()( TT

GLS ybRCbJ −⋅= −
(3)

where C is given by the Cholesky decomposition of R

( TCCR ⋅= ). The solution is the well-known

decorrelating detector:

TT

GLS yRb ⋅= −1ˆ (4)

In cases where R is ill-conditioned, the GLS solution is

very poor even in very good SNR conditions, as noise is
severely amplified in the directions of the singular vectors
(of R ), associated to small singular values. In that case,

the MMSE detector offers a much more reliable solution,
as it effectively dampens components of the solution in
these directions. The linear MMSE detector can be
derived by finding the matrix M which minimises:
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TT
MMSE yMbEMJ (5)

where {}.E is the statistical expectation operator. The

MMSE solution to the problem (derived from (5)) is given
as:

TT

MMSE yIRb ⋅⋅σ+= −12 )(ˆ (6)

Again the knowledge of the solution set is ignored and b is

assumed to take values in Uℜ .

3. TIKHONOV REGULARIZATION

Tikhonov Regularization is a particular type of
Regularization method for linear inverse problems with
the attractive feature, from a computational point of view,
that no decomposition of any kind (e.g. Singular Value
Decompostion (SVD), QR decomposition) needs to be
performed on the design matrix ( R in the MUD case).

Moreover, in general (but not necessarily) decomposition
based methods are better suited for cases in which there is
a distinct ‘jump’ in the magnitude of the singular values,
indicating some effective rank. TR on the other hand is
better suited for cases in which there is a smooth decay in
the spectrum of the design matrix. In MUD the latter case
typically holds.

TR, adds to the classical LS constraint an additional
regularization constaint :

)()()(
2

2
bybRbJ TT

TR Ω+−⋅= (7)
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The side constaint helps to narrow down the set of
possible solutions which satisfy the LS constaint, provided
the former is consistent with the problem. The side
constaint also needs to be a sufficiently simple criterion if
an analytical solution to (7) is required. A general choice
for )(bΩ which proves to be meaningful in many

problems and is also simple enough to provide an
analytical solution is the one proposed by Tikhonov (see
[1], [2] ):

2

2

2)( TbLb ⋅⋅λ=Ω (8)

L is some linear operator acting on the solution. In many

problems L represents the discrete derivative (of some

order) operator in which case the solution is known to

fulfill certain smoothness conditions. 2λ is a smoothing
regularization parameter whose value dictates the
smoothness on the filtering function which is imposed on
the spectrum of the design matrix by the Regularization

constraint. Obviously, as 02 →λ no weighting is

imposed on the singular values of R and the TR solution

coincides with the LS one. On the other hand as ∞→λ2 ,
an exessively smooth function is applied on the spectrum
of R and information about the solution in the

observation is lost in the attempt to over supress noise.

Optimal selection of 2λ is not a trivial task in practice and
many methods have been proposed in the literature (e.g.
Cross Validation, Generalised Cross Validation, Graphical
methods, etc.).

In the case where knowledge about an initial-default

solution b
~

is known for the problem then (8) can be

further generalized as:
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In this case 2λ controls the bias in the estimator towards

the default solution. As ∞→λ2 the estimator will
coincide with the default solution and no useful
information will be extracted from the observations. This
is not necessarily bad as the default solution might already
be close to the true one (in which case the observation will
have a negative effect on the quality of the estimator)
although it is not easy to verify that in practice.

Starting from the general formulation of TR criterion :
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A solution can be found by setting
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which leads to the following solution:
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We observe that the Tikhonov estimator resembles
strongly the structure of the MMSE one. Indeed by setting

IL = , 0
~ =b and 22 σ=λ we get the MMSE solution for

the case when the noise is zero mean with covarinance

I⋅σ2 and uncorrelated with b . In a similar fashion the

MMSE multiuser detector can be derived from the TR
criterion by solving a slightly modified problem

2
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in order to take into account the non whiteness of the
noise. The solution of (13) is given by:
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which is exactly the MMSE detector. This result indicates

that choosing 22 σ=λ for the particular problem is a
good choice. This is an important observation as far as
producing an initial estimate in the proposed detector is
concerned, as it bypasses the need for finding a good
Regularization (or Ridge) parameter, which usually
involves solving a non-trivial optimization problem (e.g.
Generelized Cross Validation).

4. BOOTSTRAP MUD BASED ON TIKHONOV
REGULARIZATION

The proposed Multiuser detector is based on the
formulation of the TR criterion in which IL = but some

default solution is assumed to be known about the
problem. In the initial iteration no such solution is known
so the detector reduces to the MMSE one. As soon as
some initial estimate is available, we use the fact that the
distribution of each estimated symbol is well
approximated by a Gaussian distribution [4] in order to
make hard decisions only for symbols which satisfy some
posterior probability of error criterion. Those, which lie
outside the required decision boundaries, are left
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unchanged. So a proposal solution vector is constructed
which consists of both soft and hard estimates, the latter of
which we are confident about their correctness. The
estimator used in each iteration is given by:

)
~

()(ˆ 212 TT

TR ybRIb +⋅λ⋅+⋅λ= − (15)

where b
~

is the semi-hard proposal solution to the

problem. The effect of this procedure is to iteratively limit
the variance in the estimation error while at the same time
bias the estimator towards the correct solution. Simulation
results (see section 5.) have shown that when this method
is applied to the MUD problem, it provides a significant
performance gain especially if in each iteration we show
increased belief in the proposal solution by increasing the

value of 2λ . From a computational point of view the latter

is not very bad news as 12 )( −+⋅λ RI can be efficiently

recomputed by decomposing �
=

⋅=⋅
U

i
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T
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(where iw is the all zero vector except for the thi element

which is 1) and applying iteratively (U times) the matrix
inversion lemma:
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5. SIMULATION RESULTS

The proposed Bootstrap detector has been simulated for
the simple MUD problem presented in section 2. Figure 1
illustartes the Bit Error Rate (BER) versus received SNR.
Random spreading codes have been used and

50== NU , which results in a significantly ill-

conditioned R indicated by the very poor performance of

the decorrelator detector and the moderately bad
performance of the MMSE detector. The single user
performance which is the target performance is also
plotted. We also give the decorrelator and MMSE
performance for the case when 1002 =⋅= UN which

results in a well conditioned R , indicated by the good

performance of both the decorrelator and MMSE
detectors. In a real system this scenario would translate
into doubling the required bandwidth which is not
desirable. For the regularization parameter we have chosen

22 σ=λ for the zeroth iteration (MMSE detector) and we
have introduced a weighting function for subsequent

iterations so that 22 σλ ⋅= a
k k , for number of iterations

1≥k with 1=a . There is a trade-off involved in the
selection of the weighting function between convergence

speed and BER performance. Obviously with big
weightings the information in the data will be ignored and
the estimator will quickly converge to some value.
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Figure 1 : BER Vs. SNR Performance Evaluation of the
Bootstrap Detector

6. CONCLUSIONS

A new type of MUD for CDMA has been presented which
is based on a particular formulation of the Tikhonov
Regularization criterion where an initial solution to the
problem is assumed known. In the proposed method this
solution does not originate from some external source but
from a sensible use of knowledge about the solution finite
space and some initial estimate. The method is in principle
applicable to many other communication and engineering
linear inverse problems, in which the solution space is
finite and known and also some knowledge about the
statistics of the solution is available.
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