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ABSTRACT

A novel Multi-User Detection (MUD) technique for
CDMA systemsis introduced. The new method is well
suited for cases in which the code cross correlation
matrix isill -conditioned. In practice this case coincides
with having code lengths approximately equal to the
number of users — a desirable condition in terms of
bandwidth efficiency. Our approach employs an
iterative formulation of a well-known regularization
method for linear inverse problems, which is suited to
the MUD praoblem. The technique allows knowledge of
the finite set in which the solution belongs to be
exploited in a computationally efficient manner in
order toiteratively improvethe quality of the estimate.

1. INTRODUCTION

Since the introduction of the optima Maximum-
Likelihood (ML) detector (see [3]) a number of lower
complexity classes of detectors have been proposed,
attempting to approach the ML performance in a
computationally and bandwidth efficient manner.
Examples of those detector classes are the linear detectors
(e.g. MMSE and Decorrelator), the linear and non-linear
Interference Cancellation (I1C) based detectors (e.g. Serial
and Parallel IC, Decision feedback, Turbo MUD etc.) and
the Subspace Based Linear detectors. A fundamental
difference between the ML detector and the rest is the
explicit use of the prior knowledge regarding the solution
set, which however results in solving an NP-hard
optimization problem.

The proposed detector is based on a well established
method for solving ill-posed linear inverse problems,
namely Tikhonov Regularization® (TR). The fundamental
idea in TR is to introduce to the Least Squares (LS)
optimization criterion some additional side constraints,
which the desired solution needs to fulfill. Those
congtraints need to be chosen carefully not only to be

! Also known as Ridge Regression in the statistical literature
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meaningful but also to be simple enough to allow an
analytical solution to the problem. In section 3 we
demonstrate that the MM SE detector is a specia case of
the TR solution to the MUD problem with a particular
choice of the regularization parameter.

The clear distinction between the various constraints that a
TR solution needs to satisfy gives to the method more
design flexibility but also increased difficulties in terms of
determining optimal (in some sense) regularization
parameters. The new detector is based on a particular
formulation of the TR problem in which some prior
solution to the problem is assumed to be known. In
contrast to other detectors, which make use of prior
information, the proposed one does not rely on any
external devices. Instead it uses its own initial estimate in
conjunction with knowledge of the finite solution set in
order to feedback a proposal solution, closer to the true
one, and re-solve the TR problem. This procedure is
repeated iteratively, giving increased importance to the
fed-back solution in each iteration.

2. FORMULATION OF THE BASIC MUD
PROBLEM

In this section a simplified multiuser CDMA model is
developed and the basic MUD problem is formulated.

A discrete time baseband model of a synchronous DS
CDMA system is considered where U users are active.

Each of the u (1<i<U) users transmits a BPSK
modulated bit b, after this has been spread by some

N
spreading sequnece s, =)' s, - §[(k—n)-T,] (of length
n=1

N) where K is a discrete unit delay variable, T, is chip
Lk=0

. The energy in each of the
0,k#0

code sequences is chosen and normalized so that

period and d[K] = {
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1 i=]
S -§T = . . .. Assuming an AWGN channel
P <1 ,i#]

and equal power for each user then the received sequence
can be expressed as:

£=i\/E—b'bi'§i+D D

where |/E, is the energy in each modulated symbol and

N is some sampled (in chip rate) realization of a white
Gaussian process with zero mean and covariance matrix
o’ -I=N . For simplicity the problem will be formulated

involving only with real variables. Extensions for vectors
defined in complex spacesis straight forward.

The received signal is despread by cross-correlating
with each of the code sequences giving samples
y. =r-s/ each in which the contribution in energy from
user U;is dominant. Nevertheless contributions from the

rest of the users are still significant and a detection scheme
based directly on these samples is characterised by very
poor performance. Instead of treating multiuser
interference as some increase in the noise power
(compared to the single user case), MUD techniques
attempt to reject the interference by processing al the

samples Y=[VY,,Y,..,Y,] collectively. In particular
MUD involves solving an inverse linear problem of the
form:

Rb =y =27"+v @)
where 5 is the U xU code cross-correlation matrix

which is symmetric and  positive  definite,
b=[b,,b,,...,a, ] which needs to be determined, z isthe

same as Yy for the case where there is no thermal noise
present and \_/T is a sampled (in symbol level) realisation

of Gaussian process with zero mean and covariance matrix
2
o -R.

2.1. Brief Review of Linear Multiuser Detectors

The simplest linear detection technique solves the
Generalised Least Squares (GLS) problem by assuming
that the solution belongs to an infinite space and
minimizing the cost function:

Jas)=[c*RD" -y ©

where C is given by the Cholesky decomposition of R
(R=C-: Ch).
decorrelating detector:

The solution is the well-known

AT

bes = 5_1 : yT 4

In cases WhereB is ill-conditioned, the GLS solution is
very poor even in very good SNR conditions, as noise is
severely amplified in the directions of the singular vectors
(of R), associated to small singular values. In that case,
the MM SE detector offers a much more reliable solution,

as it effectively dampens components of the solution in
these directions. The linear MMSE detector can be

derived by finding the matrix ﬂ which minimises:
2
et =0 w0}

where E{} is the statistical expectation operator. The

MM SE solution to the problem (derived from (5)) is given
as.

Buyee = (R+0% 1)y ()

Again the knowledge of the solution set isignored and bis
assumed to take valuesin RV .

3. TIKHONOV REGULARIZATION

Tikhonov Regularization is a particular type of
Regularization method for linear inverse problems with
the attractive feature, from a computational point of view,
that no decomposition of any kind (e.g. Singular Vaue
Decompostion (SVD), QR decomposition) needs to be
performed on the design matrix (R in the MUD case).

Moreover, in general (but not necessarily) decomposition
based methods are better suited for cases in which there is
a distinct ‘jump’ in the magnitude of the singular values,
indicating some effective rank. TR on the other hand is
better suited for cases in which there is a smooth decay in
the spectrum of the design matrix. In MUD the latter case
typically holds.

TR, adds to the classical LS constraint an additional
regularization constaint :

3w® =[(R-b" - y")[ +b) ™
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The side constaint helps to narrow down the set of
possible solutions which satisfy the LS constaint, provided
the former is consistent with the problem. The side
constaint also needs to be a sufficiently ssimple criterion if
an analytical solution to (7) is required. A genera choice
for Q(b)which proves to be meaningful in many
problems and is aso smple enough to provide an
analytical solution is the one proposed by Tikhonov (see

(11, [2]):
Q) = Lo’ ®)

L is some linear operator acting on the solution. In many

problems I=_ represents the discrete derivative (of some

order) operator in which case the solution is known to

fulfill certain smoothness conditions. A’is a smoothing
regularization parameter whose value dictates the
smoothness on the filtering function which is imposed on
the spectrum of the design matrix by the Regularization
congtraint. Obviously, as A> -0 no weighting is
imposed on the singular values of Rand the TR solution

coincides with the LS one. On the other hand as A” — o ,
an exessively smooth function is applied on the spectrum
of R and information about the solution in the
observation is lost in the attempt to over supress noise.
Optimal selection of A%is not atrivial task in practice and
many methods have been proposed in the literature (e.g.

Cross Validation, Generalised Cross Validation, Graphical
methods, etc.).

In the case where knowledge about an initial-default
solution b is known for the problem then (8) can be
further generalized as:

Qb)=»*-

L b ©

In this case A? controls the bias in the estimator towards

the default solution. As A* — oo the estimator will
coincide with the default solution and no useful
information will be extracted from the observations. This
is not necessarily bad as the default solution might already
be close to the true one (in which case the observation will
have a negative effect on the quality of the estimator)
athough it is not easy to verify that in practice.

Starting from the general formulation of TR criterion :

In® =R -y +2 e -5 o

A solution can be found by setting
a?}{X-(l;f—t?fLTL@T—E»T)+<Ee-bT—yT)T<Ee-bT—yT) =0 (11)

which leads to the following solution:

22-L'LE -b)-2R - (Rb -y)=0=
-~ D (12
bTRz(XZ _|=_TI=_+BT5)71.0\’2 '|=-T|=_'QT +5T XT)
We observe that the Tikhonov estimator resembles
strongly the structure of the MM SE one. Indeed by setting
L=1,b=0and A* = 6* we get the MMSE solution for

the case when the noise is zero mean with covarinance
6®-1 and uncorrelated with b. In a similar fashion the

MMSE multiuser detector can be derived from the TR
criterion by solving a dightly modified problem

In®=[c™ R -y +o o] (13)

in order to take into account the non whiteness of the
noise. The solution of (13) isgiven by:

[o28)

=" 1+R'(C-C")*R™-R -(C-C")'y =
R E) D R )Y (14)
:(62.l+R)’1.yT

which is exactly the MM SE detector. This result indicates

that choosing A> =c® for the particular problem is a
good choice. This is an important observation as far as
producing an initial estimate in the proposed detector is
concerned, as it bypasses the need for finding a good
Regularization (or Ridge) parameter, which usually
involves solving a non-trivial optimization problem (e.g.
Generelized Cross Vaidation).

4. BOOTSTRAP MUD BASED ON TIKHONOV
REGULARIZATION

The proposed Multiuser detector is based on the
formulation of the TR criterion in which I=_ =I= but some

default solution is assumed to be known about the
problem. In the initia iteration no such solution is known
so the detector reduces to the MMSE one. As soon as
some initial estimate is available, we use the fact that the
distribution of each estimated symbol is well
approximated by a Gaussian distribution [4] in order to
make hard decisions only for symbols which satisfy some
posterior probability of error criterion. Those, which lie
outside the required decision boundaries, are left
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unchanged. So a proposal solution vector is constructed
which consists of both soft and hard estimates, the latter of
which we are confident about their correctness. The
estimator used in each iteration is given by:

b= 1+R)*- (Wb +y") (15)

where Eis the semi-hard proposal solution to the

problem. The effect of this procedure is to iteratively limit
the variance in the estimation error while at the same time
bias the estimator towards the correct solution. Simulation
results (see section 5.) have shown that when this method
is applied to the MUD problem, it provides a significant
performance gain especialy if in each iteration we show
increased belief in the proposal solution by increasing the

value of A?. From a computational point of view the latter
is not very bad news as (A”-| + R)™can be efficiently

U
recomputed by decomposing A° -1 = EZZV_ViT W,
i=1

(where Wi, isthe all zero vector except for the i™ element

which is 1) and applying iteratively (U times) the matrix
inversion lemma:

-1 T -1
1 i -X -

I
I

T _ —
(H+x -x"=H =

H

+)_(.ﬂ71.

I

5.SIMULATION RESULTS

The proposed Bootstrap detector has been simulated for
the simple MUD problem presented in section 2. Figure 1
illustartes the Bit Error Rate (BER) versus received SNR.
Random spreading codes have been wused and
U =N=50, which results in a significantly ill-
conditioned R indicated by the very poor performance of

the decorrelator detector and the moderately bad
performance of the MMSE detector. The single user
performance which is the target performance is aso
plotted. We aso give the decorrdlator and MMSE
performance for the case when N =2-U =100 which

results in a well conditioned 5 indicated by the good
performance of both the decorrelator and MMSE
detectors. In a real system this scenario would translate
into doubling the required bandwidth which is not
desirable. For the regularization parameter we have chosen
A* =" for the zeroth iteration (MM SE detector) and we
have introduced a weighting function for subsequent

iterations so that /lﬁ =k?* -0, for number of iterations

k>1with a=1. There is a trade-off involved in the
selection of the weighting function between convergence

speed and BER performance. Obviously with big
weightings the information in the data will be ignored and
the estimator will quickly converge to some value.
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Figure 1 : BER Vs. SNR Performance Evaluation of the
Bootstrap Detector

6. CONCLUSIONS

A new type of MUD for CDMA has been presented which
is based on a particular formulation of the Tikhonov
Regularization criterion where an initial solution to the
problem is assumed known. In the proposed method this
solution does not originate from some external source but
from a sensible use of knowledge about the solution finite
space and some initial estimate. The method isin principle
applicable to many other communication and engineering
linear inverse problems, in which the solution space is
finite and known and also some knowledge about the
statistics of the solution is available.

REFERENCES

[1] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed
Problems, Winston, Washington, D.C., 1977.

[2] P.C. Hansen, Rank deficient and discrete ill-posed
problems, SIAM monographs on mathematical modeling and
computation, Philadel phia, 1998.

[3] S. Verdu, Multiuser Detection, Cambridge Press, Cambridge
UK, 1998.

[4] H.V. Poor, S. Verdu, “Probability of error in MMSE
multiuser detection”, IEEE Trans. Information Theory, 45: pp
858-871, May 1997.

ACKNOWLEDGEMENTS

The first author would like to thank QinetiQ Ltd. and
EPSRC for funding his research at the University of
Bristol.

IvV-72




