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ABSTRACT

This paper dedls with the multi-user detection in the context of
random permutations. Random permutations, as a special class of
discrete Linear Periodic Time Varying filters, are atool to gener-
ate multiple access, for which it is important to devel op appropri-
ate receiver detectors. In this paper, the case of the synchronous
model is considered, for which two detectors are developped: the
matched-filter detector and the decorrelating detector. Theoretical
probabilities of error are given, which are confirmed by Monte-
Carlo simulations. A comparison with decorrelating techniques
for CDMA systems is provided, along with a discussion on the
choice of the permutations.

1. INTRODUCTION

Linear Periodic Time Varying (LPTV) filters can be used for mul-
tiple access purposes [5]. Within the wide set of LPTV filters, Pe-
riodic Clock Changes (PCC) are a specia set which transforms an
input signal z(¢) into an output signal z(t — f(t)), where f(t)
is a periodic function [3]. Using PCC, multiple access can be
achieved with spreading effects [4], [5]. In this paper a particu-
lar discrete PCC (the permutation) is considered. The basic prin-
ciple of random permutation-based Multiple Access (MA) have
been studied in previous works [4], [5]. A challenging issue of
multiple-access techniques consists of defining appropriate detec-
tors at the receiver, which allow to retrieve the bits of the different
users with a low probability of error. For CDMA systems, many
detectors have then been proposed in the literature (seefor instance
[1], [2], [6] and references therein). In this paper, the Multi User
Detection (MUD) problemisinvestigated for random permutation-
based MA systems. Section |1 dealswith the basic principles of the
MA scheme based on permutations; the synchronous signal model
considered in this paper is then presented, when the channel is
an Additive White Gaussian Noise (AWGN) channel. Section 111
is devoted to the development and the analysis of the so-called
“matched-filter” detector. The theoretical probability of error is
given, along with an approximate probability, which is based on
the assumption of a Gaussian Multiple-Access Interference (MALI).
Section IV of the paper presents the MUD detector based on a
decorrelating technique. Simulation results are reported in section
V. Theoretical derivations are first validated by Monte-Carlo sim-
ulations. The performance of the matched-filter detector and the
decorrelating detector are then compared according to the near-far
effect. Furthermore, a comparison between decorrelating detec-
tors for random permutation systems and for CDMA systems is
conducted. Gold codes are chosen for the CDMA codes. Figures
show a good performance of permutation- based MA compared to
Gold codes. Finaly, the problem of the choice of the permutations
isdiscussed in section VI.
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2. PROBLEM FORMULATION

2.1. Permutations and spreading effects

Let Z = {Z (n), n € Z} denote a stationary random sequence.
Let B = (Bi,Bs,.., Bp) be arandom permutation uniformly
distributed over {1, .., P}. Therandom sequence Z isdivided into

k k _ _
blocks of P samples ((Xn)”:1 _____ P) re’ where Xk = Z((k
1)P+n). Thetermsof eachblock (X};) _, , arepermuted ac-
cording to permutation B, yielding the new block (Y,')

where Y\ = X, DenoteY = ((v1),, )

resulting process. It can be shown that such transformation is a
particular case of a Periodic Clock Change [3]. If Z is the result
of the sampling of a data signal with N samples per symbol, the
spectrum of Y is obtained by spreading the spectrum of Z by a
factor V. Thus, N isthe equivalent spreading factor. This spread-
ing property can then be used for multiple access communications

[5].

2.2. Synchronous multi-user signal model

Let K denote the number of users. User k transmits the stream
of L bitsby £ [bx(1),...,bx(L)]", where by (1) € {—1;+1},
l € {1,...,L}. Let T and m(t) be the bit duration and the
waveform of bit +1, respectively. It is assumed in this paper that
m(t) uses an antipodal signaling (for instance, NRZ or Biphase
codes can be considered). Let m = [myq,...,my]” denote a
sampling of the waveform m(t). According to section 2.1, N
represents the spreading factor. For brievity, it is assumed with-
out loss of generality that ||m|* = m”m = 1. The stream of
modulated bits corresponding to user k& can then be expressed as
br(V)mT, ... b (L)mT]T = MTb,, where M = m® I, isthe
L x (N L) matrix defined by

M: 0

mT

(® denotes the Kronecker product, and I, isthe identity matrix of
order n). Each user is assigned a particular periodic clock change,
i.e. arandom permutation on the set {1,..., NL} is applied to
the stream M7b,.. Denote Py asthe (NL) x (N L) permutation
matrix associated to user k. Hence, user k transmits the scram-
bled sequence Pr M ™', . Since the waveform m(t) is binary, the
continuous signal transmitted by the kth user can be written as:

NL . 1
3 (PkMTQk)j r <t - rk>

Jj=1
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where (v); denotes the jth component of any vector v, (¢) isthe
indicator function over [0; T/N], and 7, € [0; T'] is the offset of
user k. In this paper, the synchronous model is considered, so that
the bit epochs of al usersare aligned at the receiver. Consequently,
™ = 0Vk € {1,...,K}, and the continuous K-user received
signal can bewritten as:

y(t) =§: Ax iL: (PkMTQk>j r (t - %T) +n(t)

k=1 j=1

where 7) y(t) isthe continuous received signadl; i) Ay > 0 isthe
received amplitude of kth user’ssignal; i) n(t) isan AWGN.

The multi-user detection problem consists then of estimating
the bits of the different users, given the received signal y(t). The
continuous signal is first passed through a filter bank, yielding the
variables:

[1>

Yj /y(t)r(t—(j—l)T/N)dt,j=1,.._,NL

K

A (PM"b,) +n,
J

k=1

It can be shown asin[6] that the vector variabley = [y1, s, . .. syne)’

is a sufficient statistic for the bits (bx(j)) 1<j<z . Consequently,
1<k<K

the detectors proposed in this paper are based on the statistic y,
which can be expressed as

K
y=y AP:M'b +n @
k=1

where the noise term n. £ [n1,ns,...,nnz]” is a zero-mean

Gaussian vector with covariance matrix o2 In ..

3. MATCHED-FILTER DETECTOR

3.1. Detection Scheme

Given vector y, the basic idea to retrieve the bits of the kth user
consists of: 4) performing the inverse kth permutation: now, since
Py, is apermutation matrix, the matrix of the inverse permutation
issimply P{; i) passing the data through a filter matched to the
waveform m(t), i.e. multiplying the obtained discrete databy M.
Consequently, the matched-filter detector for the kth user consists

of defining the variable:
z, 2 MPly

It is then staightforward to prove that z,, can be expressed as

2, = A+ Y AiRub + MPin @
I#£k

where Ry, £ (PkMT)T (P.M™) (notein particular that Ry, =
Inr and R,fl = Ryx). The elements of Ry; represent the correla-
tions between the bits of the kth and the Ith users. Since A, > 0,
the decision rule for the jth bit of the kth user is defined by:

bie(§) 2 sign (21(j))

3.2. Performance
It can be shown using Bayes' formulathat the bit-error-rate (BER)
for bx(7) isgiven by:

P () = 5o > >
a, €{-1;+1}* a4, €{-1;+1}F
1%k

Q (% (Ak— 5> A (Rug,) )) )
I#k l
+Q <§ (Ak+ popl! (Rklgl)l»

where Q(z) £ [F*° #eﬂ‘z”du. The computational cost of
formula (3) grows exponentialy with K and L, and cannot hardly
be used in practice. Instead, using the Central Limit theorem, for
large K and/or L, thevariable >~ A; (szbl)j can be considered
14k
asazero-mean Gaussian variable, withvariance - A7 (Rw Ry
14k
Thus, the BER for b, () can be approximated by

1/2
PG) = Q [ Av/ (ﬁ > A2 (Rukh) )
12k 5J

It must be pointed out that, due to the permutations, the bits of the
same user do not behave equally. Therefore, the BER is not con-
stant for all bits of agiven user. Moreover, because of the MAI, the
error probability isnot zero in the absence of addtive noise, except
in the particular case where the permutations are orthogonal, i.e.
MPIPMT = 0forl # k (in that case, the matched-filter de-
tector is optimal). Consequently, this detector exhibits the near-far
problem behavior, i.e. its performance can decrease dramatically
when the energies of the other users increase.

4. DECORRELATING DETECTOR

4.1. Detection Scheme

It hasbeen shown in the previous section that, even for high SNR's,
the BER may remain high due to the MAI. The objective consists
now of removing this MAI in order to obtain null BER in absence
of additive noise. In MUD literature, such atechniqueis referred
to as decorrelating detection (see [6] and references therein). In
this paper, a decorrelation detector for model (1) is investigated.
Eq. (2) can be expressed in amatrix form as:

E [Alel AsRys - -- AKRkK]Q ZWPkTﬂ
where b £ [QlT,...,Qﬂ]T. Denoting z = [ng,...,gi]T, one
obtains:

z=RAb+1n

where R isthe block matrix whose block (&, 1) is Rx; (notethat R
issymmetricsince R}y = Rig); A = diag([Av, ..., Ax]T ®11)
isadiagonal matrixandn = IInwithII £ [P M7T, ..., PKMT]T.

Assuming that R is invertible, the decorrelation simply con-
sistls of multiplying z by R~ to remove the multiple-accessterms,
e

INotethat R and R~ are (NK L) x (NK L) matrices, but can be
saved as sparse matrices, since they only contain K2 N L non-zero ele-
ments. Hence, they do not imply particular memory inconvenience.
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The (k — 1)L + j -th component of ¢ corresponds to the bit by (5):

. 1~
Cnmnyppy = Acbk() + (BR) oy )

Thus, the decision rule for the decorrelating detector is given by

gk(]) 2 sign (s(k_l)Lﬂ.) (5)

4.2. Performance

It can be noted from (4) and (5) that the decision on b (j) is not
corrupted by the MAI: the only possible errors on the decision are
due to the additive noise term (R™'n Therefore, the

—)(k—l)L+j'
BER for bx(j) isgiven by

P =Q (Ak/ (var((R—lﬁ)(k_l)Lﬂ))1/2)

Sincen = IInandIIII” = R, oneconcludesthatm ~ A (0,0 R).
Hence, R~'7 ~ N'(0,02R™'R (R™)"),i.e. R™'a ~ N(0,02R™")

whichyields:

BG) =Q (A’“/ (" (<Rfl)<kfl>“f><’“*““j>1/2))

When compared to the matched-filter detector, it is important to
note that 4) the BER vanishes in absence of noise (PZ(5) — 0
when o — 0); 47) the BER's for the kth user only depend on the
amplitude A, i.e. on its own power: consequently, there is no
near-far effect®.

5. SIMULATION RESULTS

A large amount of simulations have been performed to validate
the theoretical derivations. Fig. 1 presents the theoretical and ex-
perimental BER's obtained with the matched-filter detector and
the decorrelating detector. The number of usersis K = 4, the
spreading factor is N = 8, and the number of bits per user is
L = 4; al usershave equal energies A, = 1, and the random per-
mutations are non-orthogonal. The simulation results have been
obtained using 2000 Monte-Carlo runs. It can be seen that simula-
tions confirm the theoretical derivations (obviously, for low BER's,
the curves do not coincide that well, since the number of runsis
not large enough to accurately estimate such error probabilities).
Hence, in the following figures, only the theoretical results are
drawn. As expected in section 4.1, it can be observed that for
“high” SNR’s (here SNR = 2) the decorrelating detector gives
much better results compared to the matched-filter detector, since
the non-zero MAI has been removed. As explained above, even
for equal energies, theerror probability isnot constant for different
bits and/or different users, due to the random permutations which
give different correlations between bits of all users.

2Note that the synchronous model is mainly considered in the downlink
channel, where in genera the near-far effect is negligible. However, in
future works, this property of the decorrelating detector will be shown to
persist in the asynchronous case, i.e. in the uplink channel, where this
phenomenon is very important.

SNR
Fig. 1. Theroretica and simulated BER’s of Matched Filter
(P,;”f (4)) and Decorrelating (Pg(5)) detectors for constant
users energies.

The near-far problem is considered in fig. 2, where model
parameters are identical to those of fig. 1, except that the ampli-
tudes are not constant, but equal to [10;1;5; 8]. It can be noted
that the matched-filter detector performance for a particular user
highly depends on its relative amplitude facing those of the other
users. Hence, the BER'’s are very different between all users, and

'the higher the amplitude, the lower the error probability is. On the

contrary, for the decorrelating detector, the performance does not
depend on the relative amplitude: here, user 2 haslower BER than
users 3 and 4, while it has the lowest amplitude, which confirms
the abscence of near-far effect for this method (again, the different
performances between users are only due to the involved permu-
tations). Note also that for low SNR'’s, the matched-filter detector
can perform better (here, for bit 1 of user 1) sincein that case, the
errors are essentially due to the additive noise.

BER

1010

1012

Fig. 2: BER's of Matched Filter (P,:”f (4)) and Decorrelating
(PZ(4)) detectors for different users energies.

Finaly, fig. 3 and 4 present acomparison between the decorre-
lating detector for random permutation-based multiple access and
the decorrelating detector for CDMA using Gold codes (see [6]).
Since the performances for both methods highly depend on the
particular permutation or code sets, it would not have been very
significant to show error probabilitites obtained for only few per-
mutations or codes. Instead, fig. 3 and 4 superimpose error proba-
bility curves obtained for 100 random permutations and 100 code
sets, respectively. The parameters are identical to those of fig. 1.
The Gold codes have length 7, which is comparableto N = 8
for the random permutations. Thus, the spreading factor is equa
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to 8 for permutations and 7 for Gold codes. Here, a set of Gold
codes is defined by a particular choice of 4 codes among 9 possi-
ble codes, along with a random delay from O to 6 chips. These
figures show that these multiple access techniques behave simi-
larly using decorrelation. However, it seems that the permutation
method gives more constant error probabilities, i.e. the results are
more similar from a permutation to another than results obtained
with Gold codes from one code set to another. It must be noted
that larger spreading factors (e.g., 32 or 64) give similar results.
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Fig. 3: BER's of Decorrelating detector for different permutation
Sets.
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Fig. 4: BER's of Decorrelating detector for different Gold code
sets.

6. CHOICE OF PERMUTATIONS

It has been pointed out previously that different permutations give
different error probabilities, even when all other parametersremain
fixed. Consequently, sincethe number of permutationsisfinite (al-
though very largewhen N and/or L arelarge), it exists at least one
set of optimal permutations for a given set of parameters. More
precisely, for the bit j of user k, the BER is minimized for the
matched-filter detector when S~ A? (RMRfl)j ; is minimized,
14k ’
and for the decorrel ating detector when (R 1)(k_1)L+j’(k_1)Lﬂ,
isminimized. For the matched-filter detector, theminimum BER is
then achieved for al bits of all users when the K permutations are
orthogonal, i.e. MPTP,MT = 0forl # k. In that case, this de-
tector isoptimal sincethereisno MAI: indeed, the MUD problem
is then consituted by K single-user detection problems for which
the matched-filter detector is optimal. Now, the choice of such a
set of permutations is not obvious, since there are (N L)! possi-
ble permutations and then (N L)!!/((NL)!)K! possible choices.
Thus, MAI may exist, and the error probabilty can increase dra-
matically. The decorrelating detector seems then better fitted to

MUD for such multiple-access technique. For this detector, the
correlation matrix R must first be checked to be invertible. Given
the form of R and the number of possible permutations, the prob-
ability of having R singular appears quite low: thus, the invert-
ibility of R is not a critical point and is aimost always verified
(in fact, in the many simulations which have been performed, R
was never found to be singular). Now, the choice of a set of per-
mutations which yield minimum (R 1)(k71)L+J_’(k71)L+j for all
ke{l,...,K}andj € {1,...,L} isachalenging issue. This
could be achieved numerically by minimizing an appropriate con-
trast function using Monte Carlo Markov Chains agorithms (e.g.,
the simulated annealing algorithm), or other stochastic algorithms
such as genetic algorithm. This problem is beyond the scope of
this paper and will not beinvestigated further. An interesting alter-
native solution would consist of deriving lower and upper bounds
for the error probability on the set of all possible set of permuta-
tions. Thisis also an open problem.

7. CONCLUSION

In this paper, random permutations, which areaspecial case of dis-
crete Periodic Clock Changes, are used as a particular technique
for multiple access. It is therefore important to develop efficient
methods adapted to such technique in order to detect the different
users’ signals arriving at the receiver. This paper presents two de-
tectors for the synchronous model: the matched-filter detector and
the decorrelating detector. The first detector smply consists, for a
given user, of performing the inverse permutation and the filtering
matched to the bit waveform. With the second detector, the MAI
is removed by applying the inverse correlation matrix to the data
obtained after inverse permutations and matched-filtering. Thisde-
tector shows much better performance for high SNR'’s, while for
low SNR’s both detector behaves quite similarly. In particular, an
important advantage of the decorrel ating detector isthat it does not
exhibit any near-far effect. For both detectors, the theoretical er-
ror probabilities have been derived and confirmed by Monte-Carlo
simulations. The decorrelating detector for random permutations
has also been compared to the equivalent detector devel opped for
CDMA systems. Both multiple access techniques give similar re-
sults. However, this comparison deserves to be more deeply anal-
ysed for different set of parameters, in particular according to the
number of users and the spreading factor. This study will be con-
sidered in future works. Moreover, the development of other de-
tectors(e.g., the MM SE detector) and the case of the asynchronous
model are currently under investigation.
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