
MULTI-USER DETECTION FOR RANDOM PERMUTATION-BASED MULTIPLE ACCESS

Martial Coulon and Daniel Roviras
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ABSTRACT

This paper deals with the multi-user detection in the context of
random permutations. Random permutations, as a special class of
discrete Linear Periodic Time Varying �lters, are a tool to gener-
ate multiple access, for which it is important to develop appropri-
ate receiver detectors. In this paper, the case of the synchronous
model is considered, for which two detectors are developped: the
matched-�lter detector and the decorrelating detector. Theoretical
probabilities of error are given, which are con�rmed by Monte-
Carlo simulations. A comparison with decorrelating techniques
for CDMA systems is provided, along with a discussion on the
choice of the permutations.

1. INTRODUCTION
Linear Periodic Time Varying (LPTV) �lters can be used for mul-
tiple access purposes [5]. Within the wide set of LPTV �lters, Pe-
riodic Clock Changes (PCC) are a special set which transforms an
input signal ���� into an output signal ��� � �����, where ����
is a periodic function [3]. Using PCC, multiple access can be
achieved with spreading effects [4], [5]. In this paper a particu-
lar discrete PCC (the permutation) is considered. The basic prin-
ciple of random permutation-based Multiple Access (MA) have
been studied in previous works [4], [5]. A challenging issue of
multiple-access techniques consists of de�ning appropriate detec-
tors at the receiver, which allow to retrieve the bits of the different
users with a low probability of error. For CDMA systems, many
detectors have then been proposed in the literature (see for instance
[1], [2], [6] and references therein). In this paper, the Multi User
Detection (MUD) problem is investigated for random permutation-
based MA systems. Section II deals with the basic principles of the
MA scheme based on permutations� the synchronous signal model
considered in this paper is then presented, when the channel is
an Additive White Gaussian Noise (AWGN) channel. Section III
is devoted to the development and the analysis of the so-called
“matched-�lter” detector. The theoretical probability of error is
given, along with an approximate probability, which is based on
the assumption of a Gaussian Multiple-Access Interference (MAI).
Section IV of the paper presents the MUD detector based on a
decorrelating technique. Simulation results are reported in section
V. Theoretical derivations are �rst validated by Monte-Carlo sim-
ulations. The performance of the matched-�lter detector and the
decorrelating detector are then compared according to the near-far
effect. Furthermore, a comparison between decorrelating detec-
tors for random permutation systems and for CDMA systems is
conducted. Gold codes are chosen for the CDMA codes. Figures
show a good performance of permutation- based MA compared to
Gold codes. Finally, the problem of the choice of the permutations
is discussed in section VI.

2. PROBLEM FORMULATION

2.1. Permutations and spreading effects

Let � � �� ��� � � � �� denote a stationary random sequence.
Let � � ���� �2� ��� �� � be a random permutation uniformly
distributed over ��� ��� 	�. The random sequence � is divided into
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resulting process. It can be shown that such transformation is a
particular case of a Periodic Clock Change [3]. If � is the result
of the sampling of a data signal with 
 samples per symbol, the
spectrum of � is obtained by spreading the spectrum of � by a
factor 
 . Thus, 
 is the equivalent spreading factor. This spread-
ing property can then be used for multiple access communications
[5].

2.2. Synchronous multi-user signal model

Let � denote the number of users. User � transmits the stream
of � bits �& � ��&���� � � � � �&����

A , where �&��� � �������,
� � ��� � � � � ��. Let � and ���� be the bit duration and the
waveform of bit ��, respectively. It is assumed in this paper that
���� uses an antipodal signaling (for instance, NRZ or Biphase
codes can be considered). Let � � ���� � � � ��� �A denote a
sampling of the waveform ����. According to section 2.1, 

represents the spreading factor. For brievity, it is assumed with-
out loss of generality that ���2 � �A� � �. The stream of
modulated bits corresponding to user � can then be expressed as
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(� denotes the Kronecker product, and �? is the identity matrix of
order �). Each user is assigned a particular periodic clock change,
i.e. a random permutation on the set ��� � � � � 
�� is applied to
the stream �A �&. Denote 	& as the �
�� � �
�� permutation
matrix associated to user �. Hence, user � transmits the scram-
bled sequence 	&�A �&. Since the waveform ���� is binary, the
continuous signal transmitted by the �th user can be written as:
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where ���� denotes the �th component of any vector �, ���� is the
indicator function over �	���
 �, and �& � �	�� � is the offset of
user �. In this paper, the synchronous model is considered, so that
the bit epochs of all users are aligned at the receiver. Consequently,
�& � 	 	� � ��� � � � � ��, and the continuous �-user received
signal can be written as :
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where �� ���� is the continuous received signal� ��� �& � 	 is the
received amplitude of �th user’s signal� ���� ���� is an AWGN.

The multi-user detection problem consists then of estimating
the bits of the different users, given the received signal ����. The
continuous signal is �rst passed through a �lter bank, yielding the
variables:
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It can be shown as in [6] that the vector variable � � ���� �2� � � � � ��u�
A

is a suf�cient statistic for the bits ��&�����$�$u
�$&$g

. Consequently,

the detectors proposed in this paper are based on the statistic �,
which can be expressed as

� �
g�
&'�
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A �& � � (1)

where the noise term � � ���� �2� � � � � ��u�
A is a zero-mean

Gaussian vector with covariance matrix  2��u.

3. MATCHED-FILTER DETECTOR

3.1. Detection Scheme

Given vector �, the basic idea to retrieve the bits of the �th user
consists of: �� performing the inverse �th permutation: now, since
	& is a permutation matrix, the matrix of the inverse permutation
is simply 	A

& � ��� passing the data through a �lter matched to the
waveform ����, i.e. multiplying the obtained discrete data by � .
Consequently, the matched-�lter detector for the �th user consists
of de�ning the variable:
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It is then staightforward to prove that !& can be expressed as
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��u and "A
&, � ",&). The elements of "&, represent the correla-

tions between the bits of the �th and the �th users. Since �& � 	,
the decision rule for the �th bit of the �th user is de�ned by:

��&��� � #�$� �!&����

3.2. Performance
It can be shown using Bayes’ formula that the bit-error-rate (BER)
for �&��� is given by:
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formula (3) grows exponentially with � and �, and cannot hardly
be used in practice. Instead, using the Central Limit theorem, for
large � and/or �, the variable
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Thus, the BER for �&��� can be approximated by
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It must be pointed out that, due to the permutations, the bits of the
same user do not behave equally. Therefore, the BER is not con-
stant for all bits of a given user. Moreover, because of the MAI, the
error probability is not zero in the absence of addtive noise, except
in the particular case where the permutations are orthogonal, i.e.
�	A

& 	,�
A � 	 for � �� � (in that case, the matched-�lter de-

tector is optimal). Consequently, this detector exhibits the near-far
problem behavior, i.e. its performance can decrease dramatically
when the energies of the other users increase.

4. DECORRELATING DETECTOR

4.1. Detection Scheme

It has been shown in the previous section that, even for high SNR’s,
the BER may remain high due to the MAI. The objective consists
now of removing this MAI in order to obtain null BER in absence
of additive noise. In MUD literature, such a technique is referred
to as decorrelating detection (see [6] and references therein). In
this paper, a decorrelation detector for model (1) is investigated.
Eq. (2) can be expressed in a matrix form as:
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where " is the block matrix whose block ��� �� is "&, (note that "
is symmetric since "A

&, � ",&)�� � ��)$����� � � � � �g �A ��u�

is a diagonal matrix and �� � 
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.
Assuming that " is invertible, the decorrelation simply con-

sists of multiplying ! by"3� to remove the multiple–access terms,
i.e.�:

* � "3�! � ���"3���
�Note that - and -3� are E�gu� f E�gu� matrices, but can be

saved as sparse matrices, since they only contain g2
�u non-zero ele-

ments. Hence, they do not imply particular memory inconvenience.
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The ������� � -th component of * corresponds to the bit �&���:

*
E&3��un� � �&�&��� �

�
"3����

E&3��un� (4)

Thus, the decision rule for the decorrelating detector is given by
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�
(5)

4.2. Performance

It can be noted from (4) and (5) that the decision on �&��� is not
corrupted by the MAI: the only possible errors on the decision are
due to the additive noise term

�
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When compared to the matched-�lter detector, it is important to
note that �� the BER vanishes in absence of noise (	 _

& ��� � 	
when  � 	)� ��� the BER’s for the �th user only depend on the
amplitude �& , i.e. on its own power: consequently, there is no
near-far effect2.

5. SIMULATION RESULTS

A large amount of simulations have been performed to validate
the theoretical derivations. Fig. 1 presents the theoretical and ex-
perimental BER’s obtained with the matched-�lter detector and
the decorrelating detector. The number of users is � � �, the
spreading factor is 
 � �, and the number of bits per user is
� � �� all users have equal energies �& � �, and the random per-
mutations are non-orthogonal. The simulation results have been
obtained using 
			 Monte-Carlo runs. It can be seen that simula-
tions con�rm the theoretical derivations (obviously, for low BER’s,
the curves do not coincide that well, since the number of runs is
not large enough to accurately estimate such error probabilities).
Hence, in the following �gures, only the theoretical results are
drawn. As expected in section 4.1, it can be observed that for
“high” SNR’s (here +
" � 
) the decorrelating detector gives
much better results compared to the matched-�lter detector, since
the non-zero MAI has been removed. As explained above, even
for equal energies, the error probability is not constant for different
bits and/or different users, due to the random permutations which
give different correlations between bits of all users.

2Note that the synchronous model is mainly considered in the downlink
channel, where in general the near-far effect is negligible. However, in
future works, this property of the decorrelating detector will be shown to
persist in the asynchronous case, i.e. in the uplink channel, where this
phenomenon is very important.
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Fig. 1: Theroretical and simulated BER’s of Matched Filter
(	6s

& ���) and Decorrelating (	 _
& ���) detectors for constant

users’energies.

The near-far problem is considered in �g. 2, where model
parameters are identical to those of �g. 1, except that the ampli-
tudes are not constant, but equal to ��	� �� �� ��. It can be noted
that the matched-�lter detector performance for a particular user
highly depends on its relative amplitude facing those of the other
users. Hence, the BER’s are very different between all users, and
the higher the amplitude, the lower the error probability is. On the
contrary, for the decorrelating detector, the performance does not
depend on the relative amplitude: here, user 2 has lower BER than
users 3 and 4, while it has the lowest amplitude, which con�rms
the abscence of near-far effect for this method (again, the different
performances between users are only due to the involved permu-
tations). Note also that for low SNR’s, the matched-�lter detector
can perform better (here, for bit 1 of user 1) since in that case, the
errors are essentially due to the additive noise.
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Fig. 2: BER’s of Matched Filter (	6s
& ���) and Decorrelating

(	 _
& ���) detectors for different users’energies.

Finally, �g. 3 and 4 present a comparison between the decorre-
lating detector for random permutation-based multiple access and
the decorrelating detector for CDMA using Gold codes (see [6]).
Since the performances for both methods highly depend on the
particular permutation or code sets, it would not have been very
signi�cant to show error probabilitites obtained for only few per-
mutations or codes. Instead, �g. 3 and 4 superimpose error proba-
bility curves obtained for 100 random permutations and 100 code
sets, respectively. The parameters are identical to those of �g. 1.
The Gold codes have length �, which is comparable to 
 � �
for the random permutations. Thus, the spreading factor is equal

IV - 63

➡ ➡



to 8 for permutations and 7 for Gold codes. Here, a set of Gold
codes is de�ned by a particular choice of 4 codes among 9 possi-
ble codes, along with a random delay from 0 to 6 chips. These
�gures show that these multiple access techniques behave simi-
larly using decorrelation. However, it seems that the permutation
method gives more constant error probabilities, i.e. the results are
more similar from a permutation to another than results obtained
with Gold codes from one code set to another. It must be noted
that larger spreading factors (e.g., 32 or 64) give similar results.
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Fig. 3: BER’s of Decorrelating detector for different permutation
sets.
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Fig. 4: BER’s of Decorrelating detector for different Gold code
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6. CHOICE OF PERMUTATIONS
It has been pointed out previously that different permutations give
different error probabilities, even when all other parameters remain
�xed. Consequently, since the number of permutations is �nite (al-
though very large when 
 and/or � are large), it exists at least one
set of optimal permutations for a given set of parameters. More
precisely, for the bit � of user �, the BER is minimized for the
matched-�lter detector when

�
,�'&

�2
,

�
"&,"

A
&,

�
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is minimized,

and for the decorrelating detector when
�
"3�

�
E&3��un�cE&3��un�

is minimized. For the matched-�lter detector, the minimum BER is
then achieved for all bits of all users when the � permutations are
orthogonal, i.e. �	A

& 	,�
A � 	 for � �� �. In that case, this de-

tector is optimal since there is no MAI: indeed, the MUD problem
is then consituted by � single-user detection problems for which
the matched-�lter detector is optimal. Now, the choice of such a
set of permutations is not obvious, since there are �
��� possi-
ble permutations and then �
�������
������ possible choices.
Thus, MAI may exist, and the error probabilty can increase dra-
matically. The decorrelating detector seems then better �tted to

MUD for such multiple-access technique. For this detector, the
correlation matrix " must �rst be checked to be invertible. Given
the form of " and the number of possible permutations, the prob-
ability of having " singular appears quite low: thus, the invert-
ibility of " is not a critical point and is almost always veri�ed
(in fact, in the many simulations which have been performed, "
was never found to be singular). Now, the choice of a set of per-
mutations which yield minimum

�
"3�

�
E&3��un�cE&3��un�

for all

� � ��� � � � � �� and � � ��� � � � � �� is a challenging issue. This
could be achieved numerically by minimizing an appropriate con-
trast function using Monte Carlo Markov Chains algorithms (e.g.,
the simulated annealing algorithm), or other stochastic algorithms
such as genetic algorithm. This problem is beyond the scope of
this paper and will not be investigated further. An interesting alter-
native solution would consist of deriving lower and upper bounds
for the error probability on the set of all possible set of permuta-
tions. This is also an open problem.

7. CONCLUSION
In this paper, random permutations, which are a special case of dis-
crete Periodic Clock Changes, are used as a particular technique
for multiple access. It is therefore important to develop ef�cient
methods adapted to such technique in order to detect the different
users’ signals arriving at the receiver. This paper presents two de-
tectors for the synchronous model: the matched-�lter detector and
the decorrelating detector. The �rst detector simply consists, for a
given user, of performing the inverse permutation and the �ltering
matched to the bit waveform. With the second detector, the MAI
is removed by applying the inverse correlation matrix to the data
obtained after inverse permutations and matched-�ltering. This de-
tector shows much better performance for high SNR’s, while for
low SNR’s both detector behaves quite similarly. In particular, an
important advantage of the decorrelating detector is that it does not
exhibit any near-far effect. For both detectors, the theoretical er-
ror probabilities have been derived and con�rmed by Monte-Carlo
simulations. The decorrelating detector for random permutations
has also been compared to the equivalent detector developped for
CDMA systems. Both multiple access techniques give similar re-
sults. However, this comparison deserves to be more deeply anal-
ysed for different set of parameters, in particular according to the
number of users and the spreading factor. This study will be con-
sidered in future works. Moreover, the development of other de-
tectors (e.g., the MMSE detector) and the case of the asynchronous
model are currently under investigation.
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