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ABSTRACT

Linear prediction (LP)-based decision-feedback differential
detection (DFDD) only works for diagonal differential
space-time modulation (DSTM) when fading is changing
fast and continuously. For other constellations it suffers bad
performance. In this paper, we propose DFDD based on
multiple-symbol differential detection (MSDD) for DSTM
to cope with continuous fading. A key observation is that
the correlation matrix of the received signal can be
expressed in terms of DSTM matrices corresponding to the
sent information symbols. In this way decision feedback
can be inserted into the MSDD metric, yielding a
DF-MSDD receiver while maintaining almost the same
performance as MSDD.

L. INTRODUCTION

Differential space-time modulation (DSTM) is an extension
of the standard single-antenna differential modulation
scheme to multiple-antenna systems, which allows
noncoherent  detection and  promises  significant
performance gain in fading channels. Tarokh and
Jafarkhani [ 1] proposed a scheme on the basis of
Alamouti’s orthogonal design for two transmit antennas [2].
Using the powerful tool of the group theory, Hughes [3] and
Hochwald and Sweldens [4] presented powerful design that
can handle an arbitrary number M of transmit antennas. An
appealing feature of the group design is that matrix
multiplication may be replaced by addition and table
look-up. In particular, Hochwald and Sweldens’ diagonal
DSTM greatly simplified the design of constellations.
Differential detection (DD) for DSTM suffers an
irreducible error floor in time-selective fading channels. To
mitigate the flooring effect, a number of receiver structures

outperforming the differential detector have been developed.

Schober and Lampe [ 5] proposed multiple-symbol
differential detection (MSDD) for DSTM, of which the
computational complexity is exponential in the observation
length. To overcome the computation burden, decision-
feedback differential detection (DFDD) based on linear
prediction (LP) has been proposed [5], [6], [7], [8]-
Diagonal constellations were assumed in many works on
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DFDD for DSTM [5], [6]. In this case, receiver design and
associated performance analysis are simplified considerably.
Specifically, the structure of the linear predictor is the same
as that for DPSK, i.e., a time-invariant linear filter subject
to an adverse effect that the Doppler frequency shift is
multiplied by M. Others [7], [8] did consider nondiagonal
constellations, mainly in Alamouti’s two-antenna
orthogonal design, but made an assumption that the fading
process is invariant during a DSTM supersymbol. Though
the accuracy of this assumption is acceptable in slowly
fading channels, the temporal variation is no longer
negligible in fast fading channels.

In this paper, we propose a DFDD receiver based on
MSDD. The paper is organized as follows. The system
model is given in Sect. II. DF-MSDD is introduced in Sect.
III. The bit error rate (BER) performance is analyzed in
Sect. IV. Numerical results are presented in Sect. V.

II. SYSTEM MODEL

Consider a multiple-antenna communication system over a
flat-fading channel, where data are sent from M transmit
antennas to N receive antennas. In DSTM, signals are
grouped into an M x M matrix S[k] whose row indices
represent different antennas and column indices represent
time instants kM, ..., kM + M — 1. The matrices are properly
normalized so that the average power of each column is one.
The total transmitted power, therefore, does not depend on
the number of transmit antennas.

A unitary DSTM system with M transmit antennas and a
rate R contains L = 2*" different signals. Each signal is an
M x M unitary matrix drawn from a set @
={G,,G,,,G, ,}, GG, =1, [1], [3], [4]. Every RM
bits to be transmitted at time instant kM are mapped to a
matrix G[k]. Before transmission takes place, the matrices
G[k] are differentially encoded in a fashion similar to
DPSK

S[k]1=S[k -1]G[k], S[0]=A, 1)
where A is an initially transmitted unitary matrix.

G may or may not be a group, depending on the design
methodology. The orthogonal design based on Alamouti’s
two-antenna code [2]

Lxos @
V2% X

normally yields nongroup constellations, except when R =1
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[3]. In [1] a block of R information bits selects a point from
the 2%-ary PSK signal set {exp(j2rmm/2%): 0 <m < 2% -1},
and a second block selects another point. The two points are
transmitted as x; and x,, respectively.

Hughes constructed optimal group constellations for two
antennas [3], and the approach may be extended to more
antennas. Hughes’ and Alamouti’s constellations are
generally nondiagonal. By restricting G to be Abelian,
Hochwald and Sweldens [4] proposed diagonal signals of
the form

GI =(G1)1, (}l zdiag[ejZIWO/L’“"ejZIIuM,l/L]
where u,, € {0,1,...,L—1}.

The mobile radio link 1is assumed subject to
time-correlated fading in accordance with the Jakes model
[9]. The fading processes A,,(f) forn =0, ... N— 1, m =
1, ..., M — 1 are complex normal CMO0,1) and spatially
independent. The autocorrelation of a generic fading
process A(f) is given by @[i]= E[h(t)h (t+iT)]
=J,Q2xf,Ti) , where Jy(.) is the zeroth-order Bessel
function of the first kind, f; is the maximum Doppler
frequency shift, and T is the symbol duration. Likewise, the
noises n,(t) for n = 0, ..., N — 1 are assumed to be
independent across both time and space, and are identically
CMO, o) distributed, where o = E[|n,[f][*] is the noise
variance. Because of the power normalization, the average
bit SNR at each receive antenna is E/Ny = 1/(Rc?).

Let s,[k] be the mth column of S[k], H,[k] be the

N-by-M matrix of channel coefficients seen by s, [k], and
N[k] be an N-by-M noise matrix. Then the received data are
given by
Y[k]=H{[k]S[k]+N[k], 3)
where the N-by-M? matrix #[k] is obtained by stacking
H,[k]:
HIk]=[H,[k], H,[k], - H,,_[£]],
and S[k] is a stretched version of S[k], which is no longer
square, but has dimension M*-by-M:
S[k]=blkdiag [so[k], $,[k1,-+,8,,, [k]] . 4)
To reduce the error floor associated with differential
demodulation in the presence of temporal fading correlation,

LP-DFDD makes use of V' previous observations in
decision [5]-[8]:

Glk]=arg max Re {Tr[G,Y" [k]vzil: Y[k - v]lj Gk - y]ﬂ (5)
where V is the prediction order, p, for v=1, ..., V are the
predictor taps [5], and ﬁf}[k—y]éf}[k—(v—l)]---

=1

f}[k—l] reflects the feedback of previously detected

matrices, and is equal to I if v = 1. The standard differential
detection corresponds to ' = 1. For diagonal DSTM, the
strategy (5) is optimum in the framework of DFDD

provided that the tap vector p = [py, ..., py] is derived from
the Wiener-Hopf equations for the fading-plus-noise
process [5]. In existing works, (5) was employed for
nondiagonal DSTM as well. However, our recent work
showed that LP-DFDD is only optimum if the group G is
diagonal. If G is nondiagonal, LP-DFDD leads to
performance degradation in fast fading, though it causes
little impairment in slow fading.

I11. DF-MSDD

Rather than using linear prediction, we could insert decision
feedback in MSDD. This is achieved by means of a
simplification in the expression of the received signal
correlation matrix. The new expression depends only on
uncoded signal matrices G[i], i€Z.

For a fair comparison, let the observation interval span V
+ 1 supersymbols. Stacking the variables involved in
MSDD yields the notations

S[k] = diag[S[k—V1,---,S[k—1],8[k]],
HIk]=[Hk -V, Hk -1],9H[k]],
Y[k]=[Ylk=V1-, Yk -11,Y[k]].
N[k]=[N[k-V1,---,N[k —1],N[k]].
We thus have the signal model
Y[k]=71k]S[k]+N[k] (6)
The MSDD decides in favor of S[k] that maximizes
the conditional probability density function [5]
o exp(—Tr(Y[KIRS' [K]Y" [k
S (VIR STk = p((ﬂw(m[Dit(;[s[]k]))g b

where Rg[k] is the autocorrelation matrix for Y[k] in

)

the single receive antenna scenario when S[k] is
transmitted. Rs[k] can be expressed as
Ry[k]= E[ Y"[k]Y[k]| S[k].N =1]
=S"[kI(R, ®L,)S[k]+ 071,
where ® denotes the Kronecker product, and R, is the

MV + 1)-by-M(V + 1) autocorrelation matrix of a fading
process, whose (i, j)th entry is given by ¢[ j —i].

®)

Though it is possible to feedback coded symbols
S[k—=V1,--,8[k—1] to (8), a more convenient way is to
handle the information symbols f}[k—V],~~~,G[k—l]
directly. No differential decoding is needed after detection
in this way. This can be done by expressing Rg[k] in
terms of the information supersymbols.

By collecting the differentially encoded supersymbols in
a matrix

C[k)2 [I,G[k—(V—1)],---,ﬁG[k—i],ﬁG[k—i]},
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it can be shown that Rg[k] can expressed by
reduced-dimension matrices as
Ry[k]=R, o (C"'[KIC[K]) + 7L, » ©)

where © is the Hadamard product. It is clear that Rg[k]
only depends on V' information supersymbols
G[k—(V -1)],---,G[k]. Hence, we write Rg[k]=R[k]
to better reflect its sole dependence on C[k].

Now we are in a position to introduce decision-feedback
symbols G[k—(V =1)],---,G[k—1] in C[k], and include
the trial matrices G, to define

C [k {I,(A}[k—(V—1)],~--,ﬁé[k—i],(ﬁf}[k—i]JGZ} .

After taking the logarithm of (7), we obtain the DF-MSDD
rule

Glk]=arg min_ {Tr(Y[k]Rg (K1Y [k]+ NIn(Det(R, [k]))} .(10)

The second term 1is needed because Det(Rél [£])

generally depends on the sent codeword.
For comparison, the optimum MSDD performs an
exhaustive search over L" trial sequences [5]
Clk]=arg min {Tr(s"([k]Rg1 [K]Y"[k]+ N In(Det(R . [k]))}
o</’ -1 1 1

It represents a performance limit of DF-MSDD.

The DF-MSDD structure, in general, does not lead to a
linear prediction receiver for nondiagonal G. Nonetheless, if
G is diagonal, it is equivalent to the linear prediction
receiver given in (5).

IV. ERROR ANALYSIS

In this section, we give an error analysis of DF-MSDD with
correct feedback and a comparison with the optimum
MSDD. The impact of error propagation caused by
erroneous feedback will be assessed in the next section.
Usually, but not always, the effect of erroneous feedback is
to increase the BER by a factor of two.

We start with the evaluation of the pairwise error
probability (PEP). It turns out that when G is nondiagonal,
the uniform error probability criterion is generally not
satisfied. That is, the symbol error probability depends on
which codeword is sent. Therefore, it is necessary to
condition on the event Q = (G[k— (V' -1)],---,G[k]) when

evaluating the PEP.

Conditioned on Q, é,[k] takes values on L matrices
when C[k] is transmitted. The MS-DFDD will make a
wrong decision G, if
D= Tr(S_([k]Ra [k1Y" [k]) —Tr(s?[k]Rg [k1Y" [k]) <Ne,
where ¢ 2 ln(Det(Ré’ [k]))—ln(Det(Rér[k])). For now, let

N =1 so as to simplify the manipulation. In this case, an
error occurs if

Dy = YIKIR [K]Y"[k]- YIKIRS [K]Y"[k] <c.
Defining F=R¢ [k]—Ra [k], we may express Dy by a
quadratic form D, = Y[K]FY"[k] .

function of D, can be determined in terms of the
eigenvalues of RQF

The characteristic

MY +1)-1 -1
@, (s)=Det"'(I+sRy . F) = { [T a+s2, )}
m=0

Since the fading processes are statistically independent
between receive antennas, the characteristic function of D is
simply given by @, (s) raised to the Nth power.

Consequently, the conditional PEP in the presence of N
receive antennas is given by

1 perjwe™ DY (s

P{G, > G, |Q} = ,jf DO()ds >0, (11)
2 jJemie s

which can be calculated efficiently via the

Gauss-Chebyshev quadrature [10].

Then we invoke the union-bound technique to give an
upper bound on the error probability. Finally, an average
over all the L” possible events is performed, as the uniform
error probability criterion is not fulfilled. This gives the
union bound of the BER for DF-MSDD

1 L-1
pysDEDD _ 1 d! PG, >G, |} (12)
b L'RM ;1':02,1:'# . ] l

where d,, represents the Hamming distance between the

two message codewords associated with G, and G, . The

outer sum of (12) has complexity exponential in V, but a
good approximation of the BER may be obtained by
averaging over a moderate number of randomly selected
sequences instead of the complete set.

It is possible to obtain significant insights into how well
DF-MSDD works through a performance comparison with
the MSDD. In slowly fading channels, we have derived the
seemingly surprising relation that

PDF-MSDD ~ lPMSDD

b 2 b
when correct symbols are fed back. Since the BER will
usually be doubled when detected symbols are fed back,
DF-MSDD has almost the same performance as MSDD in

slowly fading channels. As fading gets faster, P"™"°""

will be gradually higher than B

symbols are fed back. Nevertheless, the performance of
DF-MSDD can be maintained at the same level as MSDD.

when correct

V. NUMERICAL RESULTS

In this section, numerical results on the performance of
DSTM with DF-MSDD reception are presented and
compared with MSDD and LP-DFDD. We concentrate on
rate-1 DSTM using one receive antenna. The observation
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Bit Error Rate

—A— LP-DFDD [
—+— DF-MSDD
@ Simulation

Fig. 1. Performance of two-antenna nondiagonal DSTM with
DF-MSDD reception. f,7=0.03, V=3, N=1.

interval of both MSDD and DFDD spans 4 supersymbols,
ie., ¥V = 3. To save time, we average over randomly
selected ten codewords, instead of a total of L” in the outer
summation of (12). The calculation of the BER for MSDD
is based on the 2(7+1) main error patterns.

Figure 1 displays the union bounds on the BER of
two-antenna DSTM over a fast fading channel with f;T =
0.03. We show the performance of DSTM based on
Alamouti’s two-antenna code for BPSK signaling, with
standard DD, LP-DFDD, DF-MSDD and MSDD. The BER
of MS-DFDD is approximated by 2B”"™"" | ie. by

doubling the genie-aided BER. We can see that LP-DFDD
suffers very bad performance for Alamouti’s two-antenna
code. Its BER curve grows up at high SNR and eventually
flattens at a BER level even higher than differential
detection. In contrast, DF-MSDD performs quite
satisfactorily. Its BER appears to differ from that of MSDD
only by a constant factor when the SNR is high. The
simulation points for DF-MSDD with actual decision
feedback are provided, which agree with the theoretical
curve fairly well at high SNR. At low SNR, the BER is
overestimated, partially because the union bound is loose
here. Therefore, we are convinced that the effect of
erroneous feedback on DF-MSDD is marginal.

Figure 2 shows the performance of genie-aided
DF-MSDD and MSDD as fading gets faster. In a
static-fading channel, ie., f,;7 = 0, the relation

PPFMSOD _ pNSDD /o i well  valid.

PPIVSPP 5 pMSPD i fast fading channel with £4,7 = 0.03

and 0.05. In all the cases considered, DF-MSDD has
performance close to MSDD.

However,

VI. CONCLUSIONS

We have proposed DF-MSDD for DSTM in continuously
fading channels. The idea is to insert decision-feedback

Bit Error Rate

Fig. 2. Performance comparison of two-antenna nondiagonal
DSTM with genie-aided DF-MSDD and MSDD reception as
fading gets faster. =3, N=1.

symbols into the MSDD metric. Performance analysis
showed DF-MSDD and MSDD have close BER. The
impact of error propagation was assessed by computer
simulation and turned out to be marginal. The proposed
DF-MSDD receiver circumvents the limitation of the linear
prediction receiver while maintaining the low-complexity
feature.
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