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ABSTRACT

Most transmission schemes for MIMO channels assume (i) a block
fading channel without delay spread and (ii) availability of channel
state information at the receiver. Here, we extend the space-time
matrix modulation (STMM) scheme and the iterative demodulation
algorithm that we introduced previously to unknown, doubly selec-
tive MIMO channels, i.e., delay/Doppler-spread MIMO channels
that are unknown to the receiver. We show that the structure inherent
in STMM allows perfect reconstruction of the data when transmit-
ting over an unknown doubly selective channel (apparently, this is
not currently possible with other transmission schemes). Numeri-
cal simulations demonstrate significant performance advantages of
STMM over Cayley differential unitary space-time modulation.

1. INTRODUCTION

Background and Motivation.  Most transmission schemes for
multi-input/multi-output (MIMO) channels assume flat or frequen-
cy-selective fading channels and availability of channel state infor-
mation at the receiver. Only recently, methods have been developed
for the case where neither the receiver nor the transmitter possesses
any knowledge about the channel (e.g. [1-4]). An example is the
space-time matrix modulation (STMM) scheme that we proposed in
[4-6]. These methods are especially interesting in the case of low
SNR that may occur, e.g., when many users are present whose inter-

ference can approximately be modeled as white noise.> Typically,
these methods (including STMM) are formulated for a block fading
channel that is constant over one block but allowed to change from
block to block.

In this paper, we extend our STMM scheme to doubly selec-
tive MIMO channels, i.e., delay-spread and Doppler-spread MIMO
channels that are time-varying even within a block. The motivation
for doing so is twofold:

e Modeling the time-varying fading within blocks leads to an addi-
tional source of diversity, namely, Doppler diversity [8].

e The conventional block fading model severely restricts the block
length in the case of fast fading channels. A smaller block length
may be a disadvantage for code design, and it usually implies that
the channel has to be estimated more frequently. Furthermore,
explicitly modeling the channel’s time variations within a longer
block typically requires fewer parameters than using individual
time-invariant channel models for several shorter blocks.

Main Resultsand Organization of Paper. Our paper contains two
main contributions. First, we present an identifiability (or perfect
reconstruction) result stating that the structure of STMM is strong
enough to permit joint channel estimation and data detection for
doubly selective, unknown MIMO channels. (This result actually
applies to all linear space-time codes that are separable in that the
coding over space and the coding over time are done independently.)
Second, we present an iterative demodulation algorithm that per-
forms joint channel estimation and data detection.
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LIndeed, it has been shown (e.g. [7]) that in the low SNR case pilot sym-
bol based channel estimation is highly suboptimal.
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Fig. 1: Multichannel LTI representation of the (i, 7)th LTV channel.

The paper is organized as follows. Section 2 introduces a model
for the doubly selective MIMO channel. In Section 3, we show
how to combine the STMM structure with the Doppler structure of
the time-varying channel. Identifiability (or perfect reconstruction)
results and an iterative demodulation algorithm for doubly selective
channels are presented in Section 4 and 5, respectively. Finally, sim-
ulation results provided in Section 6 demonstrate the good perfor-
mance of STMM and, specifically, significant performance advan-
tages over Cayley differential unitary space-time modulation [9].

2. TIME-VARYING MIMO CHANNEL MODEL

We first present a model for the doubly selective MIMO channel
that will be used in what follows. The discrete-time baseband signal
received at the ith receive antenna is given by
. Mg L-1 .. .
w(Z) [n] = Z Z hUJ) [n7 m] S(J) [n_m] =12, Mg,
j=1 m=0
_ : @
forn =0,1,---,N—1 (i.e., the z(9[n] are observed over the in-
terval [0, N — 1]). Here, h*)[n, m] denotes the impulse response
of the linear, time-varying (LTV) single-input/single-output (SISO)
channel that maps the signal at the jth transmit antenna, s'%) [n], into
D [n]; L — 1 is the maximum time delay; and M~ and M are the
numbers of transmit and receive antennas, respectively.
Multichannel LTI Representation. Using the (delay-Doppler)
spreading function B9 [m, 1] £ SN L9) [, m]e =927 ¥ [10]
(with 3 £ /=T) and denoting the maximum Doppler shift by Np —
1, the input-output relation (1) can be rewritten as (cf. [11-13])
_ My Np—1L-1 B )
2O =33 > R s n-m], (@)
j=1 1=0 m=0

with Rl(i’j)[m] £ RCD[m, ] ™% and s(j>[n] £ 50)[p) er?" %,
This expression, which is illustrated in Fig. i corresponds to a mul-
tichannel LTI representation of the LTV channel where each sub-
channel consists of a modulator (Doppler shift) and an LTI filter.
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We conclude that practically arbitrary channels—including chan-
nels with diffuse scattering—are characterized by a finite set of LTI
filters associated with uniformly spaced, discrete Doppler shifts.
Formally, this representation is equivalent to the basis expansion
models of [14, 15] using a basis of complex exponentials with uni-
formly spaced frequencies. Note that all SISO channels are assumed
to have the same parameters L and Np; this assumption is reason-
able if the transmit antennas and, similarly, the receive antennas are
located sufficiently close to each other.

In what follows, we suppose that P of the Np subchannels in Fig.
1, corresponding to specific Doppler shifts I, € [0, Np — 1] with
p = 1,2,--- P, are active. That is, only the subchannel impulse

responses R“’])[m] are nonzero. (This is no restriction since we

allow P = ND)Thus (2) becomes
Mt P L-1
Z Z Z R(l J)
j=1p=1m=0

For channels satisfying the wide-sense stationary uncorrelated scat-
tering (WSSUS) assumption, the “active Doppler shifts” [,, can be
deduced from the channel’s scattering function [10, 16]. Because
the scattering function of a WSSUS channel does not change with
time, it is much easier to estimate than the channel itself [17, 18].
Hereafter, we assume that the [,, are known to the receiver.

Matrix Formulation. For a compact formulation of (3), we define
Ry m) - R m)
ROm] & | SR
Rl(f”R‘j)[m]
and furthermore R[m] £ [RM[m] ---

(J) [n—

m]. (3)

MR,j
Rl(p R ])[m]

RMT)[m]] and R £

[R[0] - - R[L—1]]. We also define the vector of modulated input
samples s[n] 2 [s{[n] - s{[n] -+ s [n] - s M )] T
and the following block-Toeplitz input matrix of size M+PL x N,
s[0] s[1] s[N—1]
g2 S[Tl} s[.()} s[N.— 2]
sl-L+1] s[-L+2] --- s[N—L+1]
g [n]]”

Finally, we define the output vector x[ ] £ [21n] -
x[N

[x[0] --

X =RS. 4)

For later use, we define the “generator matrix” of S as the Mt P x
(N+L—1) matrix Sy £ [s[-L + 1] s[-L + 2] --- s[N —1]].
Furthermore we define an operator TL{~[} that maps the generator

matrix to the corresponding block-Toeplitz matrix with L block-
rows, i.e., 7. {Sy} =

and the output matrix X £
Now (3) can be written as

—1]] of size Mr x N.

3. COMBINING THE STRUCTURES

As a basis for Section 4, we now show how the structure of STMM
and the Doppler structure of the LTV channel model discussed in
the previous section can be combined. We start by briefly reviewing
the STMM scheme [4].

Review of STMM. We consider K input data streams dq[n], - - -,
dx [n] with di[n] € C (i.e., no finite-alphabet assumption is made).
These data streams are mapped to the M transmit antennas as

DI

with the Mr x 1 vectors s¢[n] 2 [sV[n] --- s [n]] " and time-
varying “modulation vectors” my [n] that are known to the receiver.

Jdi[n], ®)

Defining the transmit signal matrix S; £ [s;[—L+1]---s;[N—
1]] of size My x (N+L—1), the K modulation matrices M;, £

[mp[—L+1] - -mi[N— ]} of size Mt x (N+L—1), and the K
diagonal data matrices Dy £ diag{dx[-L +1],---,di[N—1]} of
size (N+L—1) x (N+L—1), we can formulate (5) as
K
=> M;Dy. (6)
k=1

A set of modulation matrices {M, } will be called admissible if the
data sequences dj[n] can be uniquely reconstructed (up to a com-
mon constant factor) from the received matrix X in (4), without
knowledge of R. In [5], we showed that for a flat fading MIMO
channel H with rank{H?} > 1, admissible sets of modulation ma-
trices can always be found if K < rank{H}.

Combining the Structures. The Doppler structure of the channel
(3) is expressed by the relation s\’ [n] = 5[] "% . We can
rewrite this Doppler structure in a way similar to (5):

s [n] = fln] sV [n],

with s@n] 2 [sP[n] - sD[n)]” and £[n] £ [ F .
eJQT“IPTn]T. Thus, the vectors s[n] = [sV7[n] --- s T[p]]T
are given by

s[n] = s¢n] ® f[n],

where ® denotes the Kronecker product [19]. Inserting (5) for s;[n],
we can finally write

= mi[n]diln],
k=1

with my[n] £ myn] ® f[n]. (7)

Equivalently, the generator matrix Sy = [s[—L + 1] --- s[N —1]]
becomes x
S, = Z M;Dy, 8
k=1

with the “Doppler-spread modulation matrices” M, 2 [my[—L+
1]---my[N —1]] of size MrP x (N+L—1).

The structure of (7), (8) equals that of (5), (6), which shows that
the channel’s Doppler structure nicely blends into the STMM struc-

ture. We finally note that M, = M, ® F and Sy =S:OF,
where © denotes the Khatri-Rao product [19] and F £ [f[—L +
1. £[N —1]].

4. PERFECT RECONSTRUCTION

First Reconstruction Result. Using methods from deterministic
blind equalization (e.g. [13, 20]), the structure of the doubly selec-
tive channel can be exploited to equalize the channel up to an un-
known instantaneous-mixture matrix. This matrix ambiguity can in
turn be resolved by using the STMM structure (see [4]). Indeed,
the following theorem can be shown by simple “concatenation” of
results provided in [13, 20] and [4].

Theorem 1. Let the transmit matrix S; possess the STMM struc-
ture in (6), and consider the time-varying MIMO channel in (3)
or (4). Furthermore, let at least one of the K diagonal data
matrices D, be nonsingular and let Mg > MrtP, N >
max{MTP(A%§+iITIgR) Ma. UX[TP) _1} K < My for P >
2,and K < M for P = 1. Then, there exists a set of X admissi-

ble Doppler-spread modulation matrices M.

Hence, using these admissible M, the diagonal data matrices
D, (and, thus, the data dx[n]) can be reconstructed from the re-
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ceived matrix X up to an unknown constant factor ¢ € C. This
reconstruction uses the knowledge of the modulation matrices M,
but does not require knowledge of the channel R.

Theorem 1 can be reformulated as follows. Let K’ < K be the
number of data streams actually present (K’ need not be known
to the receiver). Then, the transmit matrix S occurring in (4) is

given by S = 7. { Zfz,l 1\7[ka} (cf. (8)), and the received ma-
trixis X = RS = R7.{ >K M;D;}. Suppose there is an-
other couple (R, {Dy}) that also “explains” X, i.e., we have also
X =R7.{ ¥, M;D;}. Now Theorem 1 states that there ex-
ist Doppler-spread modulation matrices M, such that the identity

K K’
k=1 k=1

implies R = cR (with ¢ € C an unknown factor) and

. [(1/e)Dy, k<K'
Dy {0, K'+1<k<K. ©)

Thus, X can be uniquely factored (up to an unknown constant factor
¢ € C) into the channel R and the data matrices Dy.
Unfortunately, the assumption Mz > M P causes Theorem 1

to be of limited practical interest. Therefore, we will now consider
an alternative result that does not rely on this assumption.

Second Reconstruction Result. The next theorem can be derived
by exploiting the combined structure offered by the channel model
and by the STMM scheme, rather than “concatenating” these struc-
tures in the two-step approach that underlies Theorem 1.

Theorem 2. Let the transmit matrix S; possess the STMM struc-
ture in (6), and consider the time-varying MIMO channel in (3) or
(4). Furthermore, let at least one of the K diagonal data matri-

- (M P)?—1 K(L—1)
ces Dy, be nonsingular and let N > vy ol el v ey and

K < min { rank{R}, Mt +1}. Then, with probability one’, there
exists a set of K admissible Mk.

We emphasize that this theorem is also valid for Mg < M~y P.
Its proof 1s more difficult than that of Theorem 1 (mainly because
for Mr < Mt P, X contains only a part of the row-span of S,
i.e., R is not left invertible); it cannot be included here because of
space constraints. We note that the theorem can be extended to the
multi-user case, which however is beyond the scope of this paper.

5. ITERATIVE DEMODULATION ALGORITHM

Next, we propose an iterative demodulation algorithm for STMM
transmission over a doubly selective MIMO channel. This algo-
rithm if valid for both Mr < Mt P and Mg > Mt P. However,
for Mr > M P there exists a more efficient POCS algorithm sim-
ilar to the one presented in [13].

Given a received matrix X =RS and assuming admissible Dopp-

ler-spread modulation matrices Mk, it follows from Section 4 that
for any pair of matrices R and S that satisfy the two properties

1. RS=X

2. S=T.{ XK, M;D;} with diagonal Dy,
the matrices D, contain the correct data up to a common constant
factor. This motivates an iterative algorithm which consists in alter-

nately executing two different steps that enforce one of the above
properties. The 4th iteration is as follows.

Step 1. The first step enforces Property 1. That is, given S{'~"
as a result of Step 2 from the previous iteration (see below), we

2For this theorem, the channel R. is modeled as a realization of a random
channel that is governed by an arbitrary continuous probability density.

calculate R and S{” such that R®S{" = X. As afirst substep,
we calculate R such that RS~ best approximates X in the
least-squares (LS) sense. Thus, R = XS{'~V# where S{'~V#
is the pseudo-inverse of Sg*”. As a second substep, we calculate
SV such that R™S" = X. This gives the final result

S = RV#X = (XS§V#)*X.

Step 2. This step attempts to enforce Property 2. That is, given Sg”
from Step 1 above, we calculate a generator matrix Sﬁ,“ with STMM
structure, i.e, S = S°X M, D, where the D" are chosen
such that the product R V72 {S{”} best approximates RS " in
the LS sense. Since RS = X (see Step 1), these D" are such

that R 7, { S} } best approximates X. To solve this problem, we

first rewrite (4) as
Rd = vec{X},

whered £ [dl[—L+1] dK[—L—‘rl} d1[N—1] dK[N—

1]] . vec{X} isthe Mr N x 1 vector formed by stacking all columns
of X, and the Mt N x K(L+ N —1) matrix R is defined as

R{A™ REE™ RY

R 2 REE™ REE™ RY 0 |
R(LNIL) R(LN;LJrl)”' R(()Nfl)

(10)

where RS 2 R[m]Mn] with M[n] £ [fu[n] --- mx[n]].

The above LS approximation problem is thus equivalent to choosing
d® such that R d‘®) best approximates vec{X} in the LS sense;
here, R is defined as in (10) with R[m] replaced by R [m]

(note that R(i>[mL is contained in the matrix R(*) that was calcu-
lated in Step 1). The solution is given by

d® = RO#yec{X}.

We can now calculate S§” = > M, D", where the D" cor-
respond to d*). Finally, the desired matrix S.” (to be used in Step
1 of the next iteration) is obtained as S5” = 7. {S{" 1.

Remarks. This algorithm yields a channel matrix estimate R

in Step 1 and data matrix estimates D,(;) in Step 2. In the noise-
free case, we always observed the algorithm to converge to the true
channel and data matrices. In the presence of noise, the algorithm
converged to matrices that were close to the true channel and data
matrices (detailed results in the presence of noise will be shown
next). However, the convergence was observed to be rather slow.

6. SSMULATION RESULTS

We conducted two experiments in which a single random data
stream d1 [n] was transmitted over a time-varying MIMO channel.
For each simulation run, the channel matrix R was randomly gener-
ated with iid complex-valued Gaussian entries. The channel output
signals were corrupted by white Gaussian noise and observed over
an interval of length N = 100. The modulation matrices M, were
constructed by taking rows of a DFT matrix as the rows of M. We
assumed two active Doppler shifts [y = —1 and l5 = 1 (this can be
interpreted as a crude approximation to a Jakes Doppler profile).

First Experiment. In our first experiment, we compare the per-
formance of our STMM scheme (using the iterative demodulation
technique of Section 5) for two channels with Mt = My = 4 and
different delay spreads. Channel 1 is flat fading (L = 1) whereas
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Fig. 2: BER vs. SNR obtained with STMM using the iterative de-
modulation algorithm: (a) comparison of channel lengths L = 1
and L = 2 (for K = 1 and Mt = Mg = 4), (b) comparison to
CDUSTM (for K = 1, Mt = Mg = 2,and L = 1).

Channel 2 has a small delay spread (L = 2). We used a single data
stream (K = 1) and 4-QAM symbols, corresponding to a data rate

of 2 bit per channel use. Fig. 2(a) shows the BER® vs. the SNR.

(The SNR is defined as E{”’f\,“ °}, where o2 is the noise variance.)

The BER performance for Channel 1 is about 2 dB better than for
Channel 2 even though Channel 2 has a higher available diversity.
We attribute this behavior to the larger number of unknown param-
eters for Channel 2. Indeed, the channel matrix R has size 4 x 8 for
Channel 1 and 4 x 16 for Channel 2, and thus Channel 2 has twice
as many parameters that need to be estimated by our algorithm.

Second Experiment. Next, we compare our STMM scheme to the
Cayley differential unitary ST modulation (CDUSTM) scheme intro-
duced in [9]. We chose L = 1 since the CDUSTM scheme assumes
a flat fading channel. Furthermore, we used Mt = My = 2 and a
data rate of 2 bit per channel use. For the STMM scheme, this rate
was achieved by using a single data stream (K = 1) and 4-QAM
s¥n[1b]ols. For the CDUSTM scheme, we used the optimized codes
of [9].

Fig. 2(b) shows the BER vs. the SNR for our STMM
scheme using the iterative demodulation technique and for the
CDUSTM scheme using linearized ML decoding (denoted by
‘CDUSTM/IinML). It is seen that STMM outperforms CDUSTM
by up to 7 dB, even though our demodulation algorithm is an equal-
ization technique (followed by quantization) and not a detection
technique such as ML decoding. We attribute the good perfor-
mance of our algorithm to the significantly larger block length al-
lowed by STMM and by the time-varying channel model (we used
N = 100), as compared to the small block length of N = 4 re-
quired by CDUSTM. Because of the larger N we have many more
equations than unknowns, which results in better demodulation re-
sults. We also note that STMM is a purely spatial code; typically, it
will be augmented by an outer temporal code that can be expected
to result in further improvements of performance.

Fig. 2(b) also shows the performance of CDUSTM with lin-
earized ML decoding for the unrealistic case that no Doppler spread
is present, i.e., P = 1 and [y = 0 (denoted by ‘CDUSTM/liInML
LTI’). This allows to assess the performance loss suffered by
CDUSTM due to the Doppler. While the performance of CDUSTM
for the time-invariant channel is better than for the time-varying
channel (especially at higher SNR), it is still significantly poorer
than the performance of STMM for the time-varying channel.

7. CONCLUSION

Space-time matrix modulation (STMM) is a simple and attractive
transmission scheme for unknown MIMO channels. In this pa-
per, we showed that both the STMM scheme (including perfect re-
construction for unknown channels) and a corresponding iterative
demodulation algorithm can be extended to doubly selective (i.e.,
delay-spread and Doppler spread) MIMO channels. This channel

SFor calculation of the BER, we assume that the factor ¢ in (9) is known.

model allows for large block lengths even in the case of fast fad-
ing channels. Apparently, STMM is currently the only space-time
modulation/demodulation technique that allows perfect data recon-
struction for transmission over an unknown doubly selective chan-
nel. The good performance of STMM and, specifically, significant
performance advantages over Cayley differential unitary space-time
modulation were demonstrated by means of simulations.
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