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Abstract— We present herein a differential space-time-
frequency (DSTF) modulation scheme for systems with an arbi-
trary number of transmit antennas over frequency-selective fad-
ing channels. The proposed DSTF scheme employs a concate-
nation of a specially designed spectral encoder and a differen-
tial encoder/mapper that yield the maximum spatio-spectral di-
versity advantage and significant coding gain. To reduce the de-
coding complexity, the differential encoder is designed with a uni-
tary structure that decouples the maximum likelihood (ML) detec-
tion in space and time; meanwhile, the spectral encoder utilizes a
new linear constellation decimation (LCD) coding scheme that en-
codes across a minimally required subchannels and, as a result,
has the least decoding complexity among all full-diversity codes.
Numerical results show that the proposed DSTF scheme compares
favorably with several existing differential space-time schemes for
frequency-selective channels.

I. INTRODUCTION

Differential space-time coding (DSTC), which circumvents
the challenging task of multi-channel estimation in time-
varying channels, has generated significant interest recently
[1]–[3]. Current DSTC schemes are designed primarily for
flat-fading channels. One possible wideband extension is to
use DSTC with orthogonal frequency division multiplexing
(OFDM) on each subcarrier across the transmit antennas (e.g.,
[4]). Such an extension, however, does not exploit additional
degrees of freedom offered by multipath propagation in wide-
band systems. Hence, it achieves only spatial diversity, but no
spectral diversity inherent in wideband systems.

We present herein a novel differential space-time-frequency
(DSTF) modulation scheme for systems with an arbitrary num-
ber of transmit antennas in frequency-selective channels. The
DSTF scheme employs a concatenation of a specially designed
spectral encoder and a differential encoder that are designed to
maximize the spatio-spectral diversity and coding gain.
Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts
(·)T , (·)∗, (·)H denote the transpose, conjugate, and conjugate
transpose, respectively; IM is the M ×M identity matrix; 0
(respectively, 1) is a vector or matrix with all zero (resp., one)
elements; ⊗ denotes the Kronecker product; finally, diag{·}
denotes a diagonal matrix.

II. SYSTEM DESCRIPTION

Fig. 1 depicts a baseband DSTF system withNt ≥ 2 transmit
antennas (Tx’s) andNr = 1 receive antenna (Rx). At the trans-
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Fig. 1. A baseband differential space-time-frequency (DSTF) system with two
transmit antennas and one receive antenna. (a) Transmitter. (b) Receiver.

mitter, the information stream is first serial-to-parallel (S/P)
converted to form vectors d(n) � [d(nP ), . . . , d(nP + P −
1)]T . The spectral encoder Ms{·} maps d(n) to P × 1 vectors
s(n). The differential encoder Md{·} takes as inputNs consec-
utive spectrally encoded vectors, s(nNs), . . . , s(nNs+Ns−1),
and outputs the following DSTF code matrix:

X (n) �




x1(nNd) . . . x1(nNd +Nd − 1)
...

...
...

xNt
(nNd) . . . xNt

(nNd +Nd − 1)


 . (1)

The P×1 vector xi(nNd+l) � [xi(nNd+l; 0), . . . , xi(nNd+
l;P−1)]T is next OFDM modulated on P subcarriers, parallel-
to-serial (P/S) converted, and transmitted from Txi during the
lth OFDM symbol interval. At the receiver, the received data
is S/P converted and OFDM demodulated to output y(n) �
[y(n; 0), . . . , y(n;P − 1)]T , where y(n; p) denotes the sample
corresponding to the pth subcarrier of the nth OFDM symbol.
The differential decoder M−1

d {·} takes as inputs 2Nd data vec-
tors y((n−1)Nd), . . . ,y(nNd +Nd−1), performs differential
decoding, and outputs estimates ŝ(nNs), . . . , ŝ(nNs +Ns−1).
Finally, the spectral decoder M−1

s {·} performs decoding. The
channel between Txi and the Rx is modeled as a finite im-
pulse response (FIR) filter with coefficients {hi(l)}L

l=0, where
L denotes the channel order. The frequency response at the
pth subchannel is Hi(p) �

∑L
l=0 hi(l) exp(−2πlp/P ). Since

OFDM converts the frequency-selective channel into a set of
frequency-flat channels, we have

y(n; p) =
∑Nt

i=1Hi(p)xi(n; p) + w(n; p), (2)
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where w(n; p) denotes the zero-mean complex white Gaussian
noise with variance N0/2 per dimension.

The problem of interest to this work is to design Md{·} and
Ms{·} for wideband differential transmission that yields the
maximum spatio-spectral diversity gain as well as significant
coding gain.

III. DIFFERENTIAL MODULATION

The proposed differential scheme makes use of block or-
thogonal designs. To introduce necessary notation, the idea of
complex orthogonal designs [5] is briefly reviewed. A (gen-
eralized) complex orthogonal design of size Nt in variables
s0, . . . , sNs−1 is an Nt × Nd matrix C, formed by entries 0,
±s0, ±s∗0, . . . , ±sNs−1, ±s∗Ns−1 and their linear combinations,
that satisfies CCH = α(|s0|2 + · · · + |sNs−1|2)INt

for some
positive constant α [5]. To facilitate differential modulation,
we classify complex orthogonal designs into two categories:
square and non-square complex orthogonal designs. Square de-
signs are those with Nt = Nd, which exist for powers of two,
i.e., Nt = 2, 4, 8, . . . . Square designs also form the base of
non-square designs with Nd �= Nt (and necessarily Nd > Nt

[5]). Specifically, any non-square complex orthogonal design
can be obtained by taking the first Nt rows of the correspond-
ing base square design [5]. The ratio Ns/Nd is called the rate
of the design. It is known that full-rate (i.e., Rd � Ns/Nd = 1)
complex orthogonal designs exist only for Nt = 2. The best
rate known for Nt = 3 and 4 is Rd = 3/4, whereas for Nt > 4
it is Rd = 1/2 [5], [6].

Back to the DSTF system, let S(n) be N̄tP × Nd matrices
formed from these vectors through the following block complex
orthogonal design

S(n) � N−1/2
s

Ns−1∑
k=0

[Ak ⊗ s(nNs + k)+Bk ⊗ s∗(nNs + k)],

(3)
where Ak and Bk are N̄t × Nd matrices associated with a
complex orthogonal design of size N̄t [5], [7], which is iden-
tical to the size of a base square complex orthogonal design.
In particular, N̄t = Nt, if Nt = 2, 4, 8, . . . ; N̄t = 4, if
Nt = 3; N̄t = 8, if Nt = 5, 6, 7; so on and so forth. Let
X̄ (−1) =

√
EsIN̄t

⊗ 1P×1 be the initial DSTF code matrix,
where

√
Es is an energy scaling factor, and [cf. (1)]

X̄ (n) �




x1(nNd) . . . x1(nNd +Nd − 1)
...

...
...

xN̄t
(nNd) . . . xN̄t

(nNd +Nd − 1)


 . (4)

The proposed differential encoding scheme proceeds as if there
were N̄t transmit antennas:

X̄ (n) = D̄x(n− 1)S(n), n = 0, 1, . . . , (5)

where the N̄tP × N̄tP matrix D̄x(n) is similarly defined
as X̄ (n) in (4) with each subvector xi(nNd + l) replaced
by the corresponding diagonal matrix Dxi

(nNd + l) �

diag{xi(nNd + l)}. Throughout the paper, we assume
that the coded symbols s(n) are drawn from a constant-
modulus constellation As (e.g., PSK) with unit-energy ele-
ments. This assumption, along with the orthogonal design
(3), suggest that D̄x(n) is a (scaled) unitary matrix with

D̄x(n)D̄H
x (n) = EsINdP . Since we have Nt rather than

N̄t antennas, we cannot proceed to transmit X̄ (n). Instead,
the following matrix is transmitted X (n) = TX̄ (n), where
T � [INtP ,0NtP×(N̄t−Nt)P ]. This can be thought of as having
N̄t −Nt virtual transmit antennas associated with zero channel
response, which are used to “transmit” the last (N̄t−Nt)P rows
of X̄ (n).

Let hf,i � [Hi(0), . . . , Hi(P−1)]T and Dhf,i � diag{hf,i}.
In vector form, the received signal can be written as [cf. (2)]:

y(nNd + l) =
∑N̄t

i=1 Dxi
(nNd + l)hf,i + w(nNd + l). (6)

Let y(n) � [yT (nNd), . . . ,yT (nNd + Nd − 1)]T and w(n)
be similarly formed from {w(nNd + l)}. We can write

(6) collectively as y(n) = D̄T
x (n)h̄f + w(n), where h̄f �

[hT
f,1, . . . ,h

T
f,N̄t

]T . An equivalent form of (5) is D̄x(n) =

D̄x(n−1)Ds(n), where [see (3)] Ds(n) = 1√
Ns

∑Ns−1
k=0 [Ak⊗

Ds(nNs+k)+Bk⊗D∗
s(nNs+k)], with Ds(n) � diag{s(n)}.

Note that Ds(n) is unitary by construction. Hence,

y(n) =DT
s (n)D̄T

x (n− 1)h̄f + w(n)

�DT
s (n)y(n− 1) + v(n),

(7)

where v(n) � w(n) − DT
s (n)w(n− 1) formed by i.i.d. com-

plex Gaussian entries with zero-mean and variance N0 per di-
mension. Hence,

y(n) =N−1/2
s

Ns−1∑
k=0

Nd−1∑
l=0

{
[ak,l ⊗ Dy((n− 1)Nd + l)]

× s(nNs + k) + [bk,l ⊗ Dy((n− 1)Nd + l)]

× s∗(nNs + k)
}

+ v(n),

where ak,l and bk,l areNd ×1 vectors formed from the lth row
of Ak and Bk, respectively. The above equation is referred to
as the fundamental differential receiver equation for Nt ≥ 2.
The variance of v(n) is twice that of w(n), which translates to
a 3 dB loss of SNR.

Due to the unitary structure of the proposed differential en-
coder, the ML detection of the space-time multiplexed vectors
{s(nNs + k)}Ns−1

k=0 is decoupled. In particular, we have the
following result.

Theorem 1: [7] The ML detection of the Ns coded vectors
{s(nNs +k)}Ns−1

k=0 based on two adjacent vectors y(n−1) and
y(n) decouples into Ns individual detections:

ŝML(nNs + k) = arg max
sk∈Bs

�{
zH(nNs + k)Ω1/2

y (n− 1)sk

}
,

where Bs ⊆ AP×1
s denotes a valid codebook (of the

spectral encoder Ms{·}), z(nNs + k) � Ω−1/2
y (n − 1)
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∑Nd−1
l=0

{
[aT

k,l ⊗DH
y ((n− 1)Nd + l)]y(n) + [bT

k,l ⊗Dy((n−
1)Nd + l)]y∗(n)]

}
and Ωy(n−1) �

∑Nd−1
l=0 Dy((n−1)Nd +

l)DH
y ((n− 1)Nd + l).

IV. SPECTRAL ENCODING

We assume (correlated) Rayleigh fading channels and leave
extensions to other channel models elsewhere. Specifically, as-
sume A1: The channel vectors hi � [hi(0), . . . , hi(L)]T , i =
1, 2, are zero-mean complex Gaussian with non-singular co-
variance matrix Rh � E{hhH}, where h � [hT

1 , . . . ,h
T
Nt

]T .
To minimize decoding complexity, we are interested in short
codes that encode across a minimally required number of sub-
channels for full diversity, meanwhile achieving a coding gain
as large as possible. The idea is to transmit coded symbols
in well separated subchannels by subcarrier interleaving (SI).
SI has recently been introduced to achieve full spectral di-
versity in systems with one transmit antenna [8]. Let I �
{0, 1, . . . , P − 1} collect the indices of all subcarriers. Briefly
stated, SI is a partition of I into M non-overlapping subsets
I(m) � {pm,0, pm,1, . . . , pm,Qm−1}, where Qm is the number
of subcarriers in the mth subset. For channels satisfying A1,
we need Qm ≥ L + 1 to achieve the maximum spectral diver-
sity [8]. We choose the minimum Qm = L + 1 so that the
decoding complexity is minimized. Among other alternatives,
the following SI scheme is conceptually simple [8]: I(m) ={
m, M +m, . . . , LM +m

}
, where M � P/(L + 1),

and P is assumed a multiple of L+ 1.
The input-output relation, when SI is utilized, for the mth

subcarrier subset,m = 0, . . . ,M − 1, is given by [7]

zm(nNs + k) = N−1/2
s Ω1/2

y,m(n− 1)sm(nNs + k)

+ µm(nNs + k), k = 0, . . . , Ns − 1
(8)

where zm(nNs + k) ∈ C
(L+1)×1, Ωy,m(n − 1) ∈

C
(L+1)×(L+1), sm(nNs + k) ∈ Bs,m, and µm(nNs + k) ∈

C
(L+1)×1 are quantities associated with themth subcarrier sub-

set, similarly defined as their counterparts in Theorem 1. The
probability of erroneously choosing sm(nNs+k) as s′m(nNs+
k) by the ML detector is upper-bounded by (henceforth, we
drop indices for brevity) [7]:

P(s1 → s2) ≤ [Es/(8N0)]
−re [det(Rh)

∏re

l=1 λl]
−1 (9)

where re � rank(Φe) ≤ Nt(L + 1), Φe � N−1
s INt

⊗
(FH

mD∗
eDeFm), and {λl}re

l=1 are the re non-zero eigenval-
ues of Φe. Here, De � diag(e), e � s − s′, and Fm ∈
C

(L+1)×(L+1) is formed by rows m,m + M, . . . ,m + LM
of the P -point FFT matrix F ∈ C

P×(L+1): [F ]p,q �
exp(−2π(p − 1)(q − 1)/P ). Following the routines, Gd �
min∀e �=0 re is called the diversity advantage, which deter-
mines the slope of the symbol error rate vs. SNR at high
SNR on a log-log scale and must be maximized first; Gc �
min∀e �=0 [det(Rh)

∏re

l=1 λl]
1/re is the coding advantage over
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Fig. 2. 8-PSK constellation.

an uncoded system. We summarize the optimum Gd and Gc as
follows:

Theorem 2: [7] Under condition A1, the maximum diversity
advantage of the DSTF system isGd,max = Nt(L+1), which is
achieved iff the code s has a uniform Hamming distance of L+
1. Any maximum-diversity achieving code has a coding advan-
tage given by Gc,max = N−1

s (L+ 1)[δ2Nt

min det(Rh)]1/[Nt(L+1)],
where δmin denotes the minimum product distance of the code:
δmin = min∀e �=0 |det(De)|.

For notational brevity, we will drop the subcarrier subset in-
dex m. To achieve a code rate of Rs bps/Hz, we need a code-
book with Nc � 2Rs(L+1) distinct codewords of length L + 1
(which is the minimally required code length for full diver-
sity), with coded symbols drawn from an Mc-PSK constella-
tion As. Let si � [si,0, . . . , si,L]T denote the ith codeword,
and Bs � [s0, . . . , sNc−1](L+1)×Nc

denotes the codebook. To
ensure that Bs has a uniform Hamming distance, the constel-
lation size Mc must be no less than Nc; otherwise, there exist
at least one pair of codewords that share a coded symbol at the
same location, which decreases the minimum Hamming dis-
tance to less than L + 1. We choose Mc = Nc to minimize
the decoding complexity. Let us label the constellation points
in As as 0, 1, . . . ,Mc − 1 (e.g., the 8-PSK shown in Fig. 2)
and form the sequence "c � [0, 1, . . . ,Mc − 1]. The uniform
Hamming distance requirement mandates that each row of Bs

be a permutation of "c, and any code formed by permutations
has a uniform Hamming distance of L+ 1. However, there are
a total of (Nc!)L such permutation codes, all achieving the full
diversity. An exhaustive search for codes with the best product
distance quickly becomes infeasible even for relatively small
Nc and L.

To facilitate code constructions, we introduce the idea of
constellation decimation, which effectively imposes a linear
structure on the code. The linear structure makes the analy-
sis of distance property and search for good codes significantly
easier. Specifically, let "c[k] be the kth element of "c. De-
note by "cq � {"cq[0],"cq[1], . . . ,"cq[Mc − 1]} the qth decima-
tion of "c, q = 1, 2, . . . ,Mc, where "cq[k] � "c[qk (mod Mc)],
k = 0, 1, . . . ,Mc − 1. It is noted that q and Mc have to be
relatively prime so that the decimated sequence will be a per-
mutation of "c.

A linear constellation decimation (LCD) code Bs is an (L+
1) × Mc matrix, each row of which is obtained by a proper
decimation of "c. We use the notation Bs = 〈q0, q1, . . . , qL〉
to signify that LCD code Bs is obtained by using decimation
factors qj , j = 0, 1, . . . , L, for the jth row of Bs. Consider two
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Fig. 3. Bit error rate (BER) with Nt = 2 transmit antennas transmission rate
R = 1 bit/s/Hz.

LCD codes L = 2 (i.e., 3-ray channel), As = 8-PSK as shown
in Fig. 2, and rate Rs = 1 bps/Hz:

B〈1,1,1〉
s =


0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7


 ,

B〈1,3,5〉
s =


0, 1, 2, 3, 4, 5, 6, 7

0, 3, 6, 1, 4, 7, 2, 5
0, 5, 2, 7, 4, 1, 6, 3


 .

(10)

Effectively, B〈1,1,1〉
s coincides with a repetition code. It can be

quickly verified that both codes have a uniform Hamming dis-
tance L + 1 = 3. The minimum product distances of the two
codes are δ〈1,1,1〉

min = d31 and δ〈1,3,5〉
min = d3d

2
1 (cf. Fig. 2), re-

spectively. By Theorem 2, S〈1,3,5〉 achieves a coding gain of

10 log10

(
δ
〈1,3,5〉
min /δ

〈1,1,1〉
min

)2/(L+1)

≈ 2.55 dB relative to the

repetition code. In fact, S〈1,3,5〉 can be shown (by a quick
computer search) to be the optimum LCD code with the largest
product distance.

Finally, we comment on the transmission rate of the proposed
DSTF system. For a DSTF system using a spectral encoder with
code rate of Rs bits per coded symbol, the overall transmission
rate R is defined as R � RdRs, where we recall that Rd is the
rate of the orthogonal design used for differential encoding (see
Section III). Interested readers are referred to [7] for additional
details on LCD codes.

V. SIMULATION RESULTS

Consider an OFDM system with P = 48 subcarriers. The
transmitter may have multiple Tx’s, but the receiver has only
one Rx. The channel coefficients are assumed complex Gaus-
sian with zero-mean and variance N0 = 1/(L + 1), where
L = 2 (i.e., 3-ray Rayleigh channels). The following schemes
are compared: 1) DPSK: Differential OFDM with one Tx and
standard DPSK applied on each subcarrier, which yields no
diversity and serves as a benchmark for other diversity sys-
tems. 2) DST: Differential space-time coded OFDM with mul-
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Fig. 4. Bit error rate (BER) with Nt = 3 transmit antennas transmission rate
R = 3/4 bits/s/Hz.

tiple Tx’s and the unitary differential space-time code [3] ap-
plied on each subcarrier. 3) DSTF-Plain: DSTF with mu-
tiple Tx’s but no spectral encoding (thus the word plain).
4) DSTF-Repetition: DSTF with mutiple Tx’s and repetition
code for spectral encoding. 5) DSTF-Optimum: DSTF with
multiple Tx’s and the optimum LCD code 〈1, 3, 5〉 for spectral
encoding.

For the diversity schemes (e.g., DST and DSTF), we consider
both Nt = 2 and 3 Tx’s. All DSTF schemes involve a rate loss
when Nt = 3, due to the use of the rate Rd-3/4 orthogonal
design forNt = 3 (see Section III). To make fair comparison, a
rate-3/4 convolutional code is used for all non-DSTF schemes
when Nt = 3 to ensure all schemes are compared at the same
spectral efficiency. The rate-3/4 code is obtained by puncturing
a rate-1/2 convolutional code. Fig. 3 depicts the BER vs. SNR
(defined as Es/N0) when Nt = 2 and the transmission rate
R = 1 b/s/Hz, whereas Fig. 4 depicts the results when Nt = 3
and the transmission rateR = 3/4 b/s/Hz. It is seen that DSTF-
Optimum compares favorably with all other schemes.
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