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Abstract— We present herein a differential space-time-
frequency (DSTF) modulation scheme for systems with an arbi-
trary number of transmit antennas over frequency-selective fad-
ing channels. The proposed DSTF scheme employs a concate-
nation of a specially designed spectral encoder and a differen-
tial encoder/mapper that yield the maximum spatio-spectral di-
versity advantage and significant coding gain. To reduce the de-
coding complexity, the differential encoder is designed with a uni-
tary structure that decouples the maximum likelihood (ML) detec-
tion in space and time; meanwhile, the spectral encoder utilizes a
new linear constellation decimation (LCD) coding scheme that en-
codes across a minimally required subchannels and, as a result,
has the least decoding complexity among all full-diversity codes.
Numerical results show that the proposed DSTF scheme compares
favorably with several existing differential space-time schemes for
frequency-selective channels.

I. INTRODUCTION

Differential space-time coding (DSTC), which circumvents
the challenging task of multi-channel estimation in time-
varying channels, has generated significant interest recently
[1]3]. Current DSTC schemes are designed primarily for
flat-fading channels. One possible wideband extension is to
use DSTC with orthogonal frequency division multiplexing
(OFDM) on each subcarrier across the transmit antennas (e.g.,
[4]). Such an extension, however, does not exploit additional
degrees of freedom offered by multipath propagation in wide-
band systems. Hence, it achieves only spatial diversity, but no
spectral diversity inherent in wideband systems.

We present herein a novel differential space-time-frequency
(DSTF) modulation scheme for systems with an arbitrary num-
ber of transmit antennas in frequency-selective channels. The
DSTF scheme employs a concatenation of a specially designed
spectral encoder and a differential encoder that are designed to
maximize the spatio-spectral diversity and coding gain.
Notation: Vectors (matrices) are denoted by boldface lower
(upper) case letters; all vectors are column vectors; superscripts
()T, (-)*, (¥ denote the transpose, conjugate, and conjugate
transpose, respectively; I, isthe M x M identity matrix; O
(respectively, 1) is avector or matrix with all zero (resp., one)
elements; ® denotes the Kronecker product; finaly, diag{-}
denotes a diagonal matrix.

Il. SYSTEM DESCRIPTION

Fig. 1 depictsabaseband DSTF systemwith N, > 2 transmit
antennas (Tx's) and N,. = 1 receive antenna (Rx). At the trans-
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Fig. 1. A baseband differential space-time-frequency (DSTF) system with two
transmit antennas and one receive antenna. (a) Transmitter. (b) Receiver.
mitter, the information stream is first seria-to-parallel (S/P)
converted to form vectors d(n) £ [d(nP),...,d(nP + P —
1)]*. The spectral encoder Ms{-} mapsd(n) to P x 1 vectors
s(n). Thedifferentia encoder Mq{-} takesasinput NV, consec-
utive spectrally encoded vectors, s(nNs), . .., s(nNg+Ns—1),
and outputs the following DSTF code matrix:

x1(nNy) x1(nNg+ Ng— 1)

X(n) 2 D

XN, (nNd) XN, (nNd + Ng — 1)
The P x 1 vector x;(nNg+1) £ [x;(nNg+1;0),. .., 2;(nNg+
I; P—1)]T isnext OFDM modulated on P subcarriers, parallel-
to-seria (P/S) converted, and transmitted from Txi during the
Ith OFDM symbol interval. At the receiver, the received data
is S/P converted and OFDM demodulated to output y(n) =
[y(n;0),...,y(n; P — 1)]T, where y(n; p) denotes the sample
corresponding to the pth subcarrier of the nth OFDM symboal.
The differential decoder M '{-} takesasinputs 2N, data vec-
torsy((n—1)Ng),...,y(nNqg+ Ng—1), performsdifferential
decoding, and outputs estimates§(nNy), ..., 8(nNs+ Ns—1).
Finally, the spectral decoder Mg *{-} performs decoding. The
channel between Txi and the Rx is modeled as a finite im-
pulse response (FIR) filter with coefficients {h; (1)}, where
L denotes the channel order. The frequency response at the
pth subchannel is H;(p) = ZZL:O hi(1) exp(—j2nlp/P). Since
OFDM converts the frequency-selective channel into a set of
frequency-flat channels, we have

y(n;p) = Sty Hi(p)wi(n;p) +w(n; p), @)
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where w(n; p) denotes the zero-mean complex white Gaussian
noise with variance Ny /2 per dimension.

The problem of interest to thiswork isto design Mg{-} and
M{-} for wideband differential transmission that yields the
maximum spatio-spectral diversity gain as well as significant
coding gain.

I1l. DIFFERENTIAL MODULATION

The proposed differential scheme makes use of block or-
thogonal designs. To introduce necessary notation, the idea of
complex orthogonal designs [5] is briefly reviewed. A (gen-
eralized) complex orthogona design of size N, in variables
S0y---,8N,—1 ISa Ny x Ny matrix C, formed by entries 0,
+s0, &85, ..., £8n, -1, £} _; andtheir linear combinations,
that satisfies CCH = a(|sg|? + - -+ + |sn,—1]|*)In, for some
positive constant « [5]. To facilitate differential modulation,
we classify complex orthogonal designs into two categories:
square and non-square complex orthogonal designs. Square de-
signs are those with N; = Ny, which exist for powers of two,
i.e, Ny = 2,4,8,.... Square designs also form the base of
non-square designs with Ny # N; (and necessarily N; > N,
[5]). Specifically, any non-square complex orthogonal design
can be obtained by taking the first IV; rows of the correspond-
ing base square design [5]. Theratio V; /N, is caled the rate
of thedesign. It isknown that full-rate (i.e., Rq = Ng/Ny=1)
complex orthogonal designs exist only for N; = 2. The best
rate known for Ny = 3 and4 is Rq = 3/4, whereasfor N; > 4
itisRg = 1/21[5], [6].

Back to the DSTF system, let S(n) be NP x N, matrices
formed from these vectors through the following block complex
orthogonal design

N.—1
S(n) 2 N7V S [Ar@s(nN, + k) + B, @5 (nN, + k),

k=0

©)
where A, and B, are N; x N, matrices associated with a
complex orthogonal design of size N, [5], [7], which is iden-
tical to the size of a base square complex orthogonal design.
In particular, N, = N, if N, = 2,4,8,...; N, = 4, if
N, = 3; N, = 8,if N, = 5,6,7; so on and so forth. Let
X(-1) = VE,Iy, ® 1py; betheinitiad DSTF code matrix,
where \/E, is an energy scaling factor, and [cf. (1)]

x1(nNg)
X(n) =2 :

Xl(nNd + Nd — 1)
: 4

Xy, (nNag) xy,(nNg + Nqg— 1)

The proposed differential encoding scheme proceeds asiif there
were N, transmit antennas:

X(n)=D,(n—1)8(n), n=0,1,..., (5)

where the NP x N,P matrix D,(n) is similarly defined
as X(n) in (4) with each subvector x;(nNg + 1) replaced
by the corresponding diagona matrix D, (nNg + 1) £

Vv -

diag{x;(nNg + 1)}. Throughout the paper, we assume
that the coded symbols s(n) are drawn from a constant-
modulus constellation A; (e.g., PSK) with unit-energy ele-
ments. This assumption, along with the orthogona design
(3), suggest that D, (n) is a (scaed) unitary matrix with
’bx(n)@f(n) = EJy,p. Since we have N; rather than
N; antennas, we cannot proceed to transmit X'(n). Instead,
the following matrix is transmitted X' (n) = TX (n), where
T = [In, P, On, px (N, n,)p)- THiScan bethought of as having
N, — N, virtual transmit antennas associated with zero channel
response, which are used to “transmit” thelast (N; — N;) P rows
of X (n).

Let hfﬁi £ [HZ(O), ceey HL(P— 1)]T and th,i & diag{hfﬂ-}.
In vector form, the received signal can be written as[cf. (2)]:

y(nNg +1) = th D,,(nNg+ Dhs; + w(nNg+1). (6)

Let y(n) £ [yT(nNg),...,yT(nNg + Ng — 1)]7 and w(n)
be similarly formed from {w(nNy; + [)}. We can write
(6) collectively as y(n) = D. (n)hs + w(n), where by 2
hf},...,hf]". An equivaent form of (5) is D, ( ) =

> VN,
D, (n—1)D. (n), where[see (3] D, (n) = k= S0 [Ayce
D.(nN,+k)+Br@D*(nNy+k)], withD(n) £ diag{s(n)}.

Note that D, (n) isunitary by construction. Hence,

y(n) =DT (n)D, (n — 1)hs + w(n)

2D (n)y(n — 1) +v(n),
where v(n) £ w(n) — DL (n)w(n — 1) formed by i.i.d. com-

plex Gaussian entries with zero-mean and variance Ny per di-
mension. Hence,

)

Ng—1 Ng—1
172 Z Z {akl®D (n—1)Ny+1)]
k=0 1[=0
X S(nNS + k) [bk,l ® Dy((n — 1)Nd + l)}

v(n),

where ay, ; and by, ; are Ny x 1 vectors formed from the [th row
of A, and By, respectively. The above equation is referred to
as the fundamental differential receiver eguation for N; > 2.
The variance of v(n) istwice that of w(n), which trandates to
a3 dB lossof SNR.

Due to the unitary structure of the proposed differential en-
coder, the ML detection of the space-time multiplexed vectors
{s(nNs + k)},= 0‘1 is decoupled. In particular, we have the
following result.

Theorem 1: AI?] The ML detection of the N, coded vectors
{s(nNs;+k) based on two adjacent vectorsy(n — 1) and

y(n) decouples |nt0 N, individual detections:

x s*(nNy + k)} +

ML H 1/2
§"-(nNg + k) = arg nax R{z" (nN, + k)ﬂy/ (n—1)sg},

where B, C AP*! denotes a valid codebook (of the
spectral encoder M{-}), z(nNy + k) £ Q;l/z(n -1
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X {laf, @ DY (n~ )Na+ Dly(n) + [bF, @ Dy((n —
DN+ Dy ()]} and 2, (n—1) 2 87 D, (n-1)Na+
DY ((n — 1)Ng +1).

IV. SPECTRAL ENCODING

We assume (correlated) Rayleigh fading channels and leave
extensions to other channel models elsewhere. Specifically, as-
sume Al: The channel vectorsh; = [h;(0), ..., hi(L)]T, i =
1,2, are zero-mean complex Gaussian with non-singular co-
variance matrix Ry, £ E{hh*}, whereh £ [h{,... b} ]7.
To minimize decoding complexity, we are interested in short
codes that encode across a minimally required number of sub-
channels for full diversity, meanwhile achieving a coding gain
as large as possible. The idea is to transmit coded symbols
in well separated subchannels by subcarrier interleaving ().
Sl has recently been introduced to achieve full spectral di-
versity in systems with one transmit antenna [8]. Let 7 =
{0,1,..., P — 1} collect the indices of all subcarriers. Briefly
stated, Sl is a partition of Z into M non-overlapping subsets
I 2 L P 0y Pty - - - s P, @ —1}» Where Q,, is the number
of subcarriers in the mth subset. For channels satisfying A1,
we need Q,, > L + 1 to achieve the maximum spectral diver-
sity [8]. We choose the minimum @,,, = L + 1 so that the
decoding complexity is minimized. Among other alternatives,
the following Sl scheme is conceptually simple [8]: Z(™) =
{m, M+m, ..., LM+m}, where M £ P/(L + 1),
and P isassumed amultipleof L + 1.

The input-output relation, when Sl is utilized, for the mth
subcarrier subset, m = 0,..., M — 1, isgiven by [7]

Zm(nNs + k) = Ns_l/2ﬂ;{31(n — D)sm(nNs + k)

®
+p,,(nNs+ k), k=0,...,Ng— 1

where z,,(nN; + k) € CUEAD*I Q (n — 1) €
CUADXUEAY "g (N + k) € By, and p,,(nN, + k) €
CE+D X1 gre quantities associated with the mth subcarrier sub-
set, similarly defined as their counterparts in Theorem 1. The
probability of erroneously choosing s, (nNs+k) ass,, (nN,+
k) by the ML detector is upper-bounded by (henceforth, we
drop indices for brevity) [7]:

P(s1 — s2) < [Ey/(8No)] ™" [det(Rp) TT)2, M)~

€)
where 7. £ rank(®.) < NJ(L + 1), ®. & NIy, ®
(FED!D.F,,), and {\,}/<, are the r, non-zero eigenval-
ues of .. Here, D, = diag(e), e £ s — s/, and F,, €
CLAD*(L+D) s formed by rows m,m + M,...,m + LM
of the P-point FFT matrix F € CP*I+L: [F], . £
exp(—727(p — 1)(q — 1)/P). Following the routines, G4 =
minve-o 7. 1S called the diversity advantage, which deter-
mines the slope of the symbol error rate vs. SNR at high

SNR on a log-log scale and must be maximized first; G. =

minyeo [det(Ry) [1)2, )\5]1/ " is the coding advantage over
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Fig. 2. 8-PSK constellation.

an uncoded system. We summarize the optimum G4 and G as
follows:

Theorem 2: [7] Under condition A1, the maximum diversity
advantage of the DSTF system is Ggmax = N:(L + 1), whichis
achieved iff the code s has a uniform Hamming distance of L +
1. Any maximum-diversity achieving code has a coding advan-
tage given by Gemax = N (L 4 1)[628t det(Ry, )|V INe (24D,
where dmin denotes the minimum product distance of the code:
Omin = minve;ﬁo |det(De)|.

For notational brevity, we will drop the subcarrier subset in-
dex m. To achieve a code rate of Rs bps/Hz, we need a code-
book with N, £ 2%s(L+1) digtinct codewords of length L + 1
(which is the minimally required code length for full diver-
sity), with coded symbols drawn from an M.-PSK constella-
tion A;. Lets; = [s;0,...,s;,]T denote the ith codeword,
and B, £ [so,...,SN.—1](1+1)xn, denotes the codebook. To
ensure that B, has a uniform Hamming distance, the constel-
lation size M. must be no less than V. otherwise, there exist
at least one pair of codewords that share a coded symbol at the
same location, which decreases the minimum Hamming dis-
tance to less than L + 1. We choose M, = N¢ to minimize
the decoding complexity. Let us label the constellation points
in A, as0,1,..., M — 1 (eg., the 8-PSK shown in Fig. 2)
and form the sequence ¢ 2 [0,1,..., M, — 1]. The uniform
Hamming distance requirement mandates that each row of B
be a permutation of ¢, and any code formed by permutations
has a uniform Hamming distance of L + 1. However, there are
atotal of (N.!)* such permutation codes, all achieving the full
diversity. An exhaustive search for codes with the best product
distance quickly becomes infeasible even for relatively small
Ncand L.

To facilitate code constructions, we introduce the idea of
constellation decimation, which effectively imposes a linear
structure on the code. The linear structure makes the analy-
sis of distance property and search for good codes significantly
easier. Specifically, let ¢[k] be the kth element of ¢ De-
note by ¢, £ {¢,[0],¢,[1],...,¢[M: — 1]} the gth decima-
tionof ¢, ¢ = 1,2,..., M, where ¢,[k] £ ¢lgk (mod Mc)],
k =0,1,...,M; — 1. It isnoted that ¢ and M. have to be
relatively prime so that the decimated sequence will be a per-
mutation of .

A linear constellation decimation (LCD) code B; isan (L +
1) x M. matrix, each row of which is obtained by a proper
decimation of ¢. We use the notation B, = (qo,q1,---,9L)
to signify that LCD code B, is obtained by using decimation
factorsgq;, j = 0,1,..., L, for the jth row of B,. Consider two
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LCD codes L = 2 (i.e,, 3-ray channel), A, = 8-PSK as shown
inFig. 2, and rate Rs = 1 bps/Hz:

BLLL) _

B<1,3,5> —

9
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Effectively, B 1’1’1> coincides with a repetition code. It can be

quickly ver|f|ed that both codes have a uniform Hamming dis-
tance L + 1 = 3. The minimum product distances of the two

codes are 511 = 43 and 5m1m3 B = dyd? (cf. Fig. 2), re-

spectively. By Theorem 2, S¢!-3:5) achieves a coding gain of

2/(L+1)
101log; ( 585 /5t 11) ) ~ 2.55 dB relative to the

repetition code. In fact, S35 can be shown (by a quick
computer search) to be the optimum LCD code with the largest
product distance.

Finally, we comment on the transmission rate of the proposed
DSTF system. For aDSTF system using aspectral encoder with
code rate of R bits per coded symboal, the overall transmission
rate R isdefined as R £ RqRs, where we recall that Rq isthe
rate of the orthogonal design used for differential encoding (see
Section I11). Interested readers are referred to [ 7] for additional
details on LCD codes.

V. SIMULATION RESULTS

Consider an OFDM system with P = 48 subcarriers. The
transmitter may have multiple Tx’s, but the receiver has only
one Rx. The channel coefficients are assumed complex Gaus-
sian with zero-mean and variance Ny = 1/(L + 1), where
L = 2 (i.e, 3-ray Rayleigh channels). The following schemes
are compared: 1) DPSK: Differential OFDM with one Tx and
standard DPSK applied on each subcarrier, which yields no
diversity and serves as a benchmark for other diversity sys-
tems. 2) DST: Differential space-time coded OFDM with mul-
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tiple Tx’s and the unitary differential space-time code [3] ap-
plied on each subcarrier. 3) DSTF-Plain: DSTF with mu-
tiple Tx's but no spectra encoding (thus the word plain).
4) DSTF-Repetition: DSTF with mutiple Tx's and repetition
code for spectral encoding. 5) DSTF-Optimum: DSTF with
multiple Tx’s and the optimum LCD code (1, 3, 5) for spectra
encoding.

For the diversity schemes(e.g., DST and DSTF), we consider
both V; = 2 and 3 Tx's. All DSTF schemes involve arate |oss
when N; = 3, due to the use of the rate Ry4-3/4 orthogonal
designfor N; = 3 (see Section I11). To makefair comparison, a
rate-3/4 convolutional code is used for all non-DSTF schemes
when N; = 3 to ensure al schemes are compared at the same
spectra efficiency. The rate-3/4 code is obtained by puncturing
arate-1/2 convolutional code. Fig. 3 depicts the BER vs. SNR
(defined as E/Ny) when N; = 2 and the transmission rate
R = 1 b/s/Hz, whereas Fig. 4 depicts the resultswhen N; = 3
and thetransmission rate R = 3/4 b/s/Hz. Itisseen that DSTF-
Optimum compares favorably with all other schemes.
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