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ABSTRACT

Fully-diverse constellations, i.e., a set of unitary matrices
whose pairwise differences are nonsingular, are useful in
multi-antenna communications, especially in multi-antenna
differential modulation, since they have good pairwise er-
ror properties. Recently, group theoretic ideas, especially
£xed-point-free (fpf) groups, have been used to design fully-
diverse constellations of unitary matrices. Here we con-
struct four-transmit-antenna constellations appropriate for
differential modulation based on the symplectic group Sp(2).
These can be regarded as extensions of Alamouti’s cele-
brated two-transmit-antenna orthogonal design which can
be constructed from the group Sp(1). We further show
that the structure of the code leads itself to ef£cient max-
imun likelihood (ML) decoding via the sphere decoding al-
gorithm. Finally, the performance of the code is compared
with existing methods including Alamouti’s scheme, Cay-
ley differential unitary space-time codes and group based
codes.

1. INTRODUCTION

It is well known in theory that multiple antennas can greatly
increase the data rate and the reliability of a wireless com-
munication link in a fading environment. In practice, how-
ever, one needs to devise effective space-time transmission
schemes. This is particularly challenging when the propaga-
tion environment is unknown to the sender and the receiver,
which is often the case for mobile applications when the
channel changes rapidly.

A differential transmission scheme called differential uni-
tary space-time modulation was proposed in [1, 2, 3], which
is well-tailored for unknown continuously varying Rayleigh
¤at-fading channels. The signals transmitted are unitary
matrices. In this scheme the probability of error of mis-
taking one signal Si for another Si′ , at high SNR, is proved
to be inversely proportional to |det(Si − Si′)|. Therefore
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the quality of the code is measured by its diversity product

ξC =
1

2
min

Si 6=Si′∈C
|det(Si − Si′)|

1
M (1)

where M is the number of transmit antennas and C is the
set of all possible signals. We therefore say that a code is
fully-diverse or has full diversity if the determinants of the
pairwise differences are all nonzero. The design problem is
thus the following: “Given the number of transmitter an-
tennas, M , and the transmission rate, R, £nd a set C of
L = 2MR M ×M unitary matrices, such that the mini-
mum of the absolute value of the determinant of their pair-
wise differences is as large as possible.”

The design problem, as just stated, appears to be in-
tractable since £rst the signal set and the cost function are
non-convex and second, the size of the problem can be huge,
especially at high data rates. Therefore, in [4, 5], it was pro-
posed to enforce a group structure on the constellation. This
has several advantages that are discussed in [4, 5]. More-
over, it is shown that a constellation is fully-diverse iff the
corresponding group is £xed-point-free (fpf), i.e. all non-
identity matrices have no eigenvalue at one. In [4], all £-
nite fully-diverse constellations that form a group are clas-
si£ed. And also, in [5], it is proved that the only fpf in£nite
Lie groups are U(1), the group of unit-modulus scalars, and
SU(2), the group of unit-determinant 2×2 unitary matrices.

However, no good constellations are obtained for very
high rates from the £nite fpf groups classi£ed in [4], and
constellations based on U(1) and SU(2) are constrained
to one and two-transmit-antenna systems. In this paper,
to get high rate constellations which work for 4-transmit-
antenna systems, we relax the fpf condition by considering
Lie groups with non-identity elements having no more than
k > 0 unit eigenvalues instead of no unit eigenvalues. It can
be shown that if a Lie group has rank n, then it has at least
one element with n− 1 eigenvalues at 1. (The rank of a Lie
group equals the maximum number of commuting basis el-
ements of its Lie algebra and it can be shown that fpf groups
have rank 1. See [5].) The lower the rank, the more possi-
ble it is to get a subset with no unit eigenvalue elements, that
is, the more possible for us to £nd a fully-diverse subset of
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it. There are only three simply-connected, simple, compact
Lie groups of rank 2, the Lie group of unit-determinant 3×3
unitary matrices SU(3), the Lie group of unit-determinant
4× 4 unitary, symplectic matrices Sp(2) and one of the ex-
ceptional groups G2. In this paper, we focus on Sp(2). The
codes designed based on it are fully-diverse, can be used
in four transmit antenna and any number of receive antenna
systems, exist for almost any rate and lead themselves to
polynomial-time ML decoding via the sphere decoder.

1.1. Differential Unitary Space-time Modulation

Consider a wireless communication system with M trans-
mit antennas and N receive antennas. The channel is used
in blocks of M transmissions (for more on this model, see
[6, 7]). the system equations of block τ can be written as:

Xτ =
√
ρSτHτ + Vτ

Here, S denotes the M × M transmitted signal with stm
the signal sent by the mth transmit antenna at time t. H is
the M × N complex-valued propagation matrix ,which is
unknown to both the transmitter and the receiver, and hmn

is the propagation coef£cient between the mth transmit an-
tenna and the nth receive antenna and has an iid CN (0, 1)
distribution. V is the M×N noise matrix with vtn, the noise
at the nth receive antenna at time t, iid CN (0, 1) distribu-
tion. X is the M ×N received signal matrix. The transmit-
ted power constraint is

∑M
m=1 E |stm|

2
= 1, t = 1, ...,M

so ρ represents the expected SNR at each receive antenna.
In differential modulation, the transmitted matrix Sτ at

block τ equals to the product of the previously transmitted
matrix and a unitary data matrix Vzτ taken from our signal
set C. In other words, Sτ = VzτSτ−1 where S0 = IM . The
transmission rate is R = 1

M
log2 L, where L indicates the

cardinality of our code. Further assume that the propagation
environment keeps approximately constant for 2M consec-
utive channel uses, that is, Hτ ≈ Hτ−1, we may get the
fundamental differential receiver equations [8]

Xτ = VzτXτ−1 +W ′
τ (2)

where W ′
τ = Wτ − VzτWτ−1. We can see that the channel

matrix H does not appear in (2). This implies that differ-
ential transmission permits decoding without knowing the
channel information. The ML decoder of zτ is given by

ẑτ = arg max
l=0,...,L−1

‖Xτ − VlXτ−1‖ (3)

It is shown in [1, 3] that, at high SNR, the pairwise proba-
bility of error (of transmitting Vl and erroneously decoding
Vl′ ) has an upper bound that is inversely proportional to the
diversity product of the code.

2. MATH FUNDAMENTALS

De£nition 1 (Fixed-point-free Group) [5] A group G is called
£xed-point-free (fpf) iff it has a representation as unitary
matrices with the property that the representation of each
non-unit element of the group has no eigenvalue at unity.

It can be proved easily that constellations that form a group
are fully-diverse iff the group is fpf. In [4], all £nite fpf
groups, are classi£ed. These £nite fpf groups are few and far
between although there exists an in£nite number of them.
Although these yield very good constellations at low to mod-
erate rates, no good constellations are obtained for very high
rates from them. This motivates the search for in£nite fpf
groups, in particular, their most interesting case, Lie groups.

De£nition 2 (Lie Group) [9] A Lie group is a differential
manifold which is also a group such that the group multipli-
cation and inversion map are differential maps.

Here are some examples of Lie groups. GL(n, C) is the
group of nonsingular n × n complex matrices. SL(n, C)
is the group of unit-determinant nonsingular n × n com-
plex matrices. U(n) is the group of n × n complex unitary
matrices and SU(n) is the group of unit-determinant n× n

unitary matrices. The following result shows that the groups
of interest to us are compact semi-simple Lie groups.

Theorem 1 (Lie groups with Unitary Representations) [5]
A Lie group has a representation as unitary matrices iff it is
a compact semi-simple group or the direct sum of U(1) and
a compact semi-simple group.

It is proved in [5], that the only fpf in£nite Lie groups
are U(1) and SU(2). Due to their dimensions, constella-
tions based on the two Lie groups are constrained to one and
two-transmit-antenna systems. To obtain a four-transmit-
antenna constellation, we relax the fpf condition and con-
sider compact semi-simple Lie groups whose non-identity
elements have no more than k > 0 unit eigenvalues (k = 0
corresponds to fpf groups.) In designing a constellation of
£nite size, we need to sample the Lie group’s underlying
manifold. When k is small, there is a good chance that,
sampling appropriately, the resulting code is fully-diverse.
In general, it does not seem that there is a straightforward
way to analyze the number of unit eigenvalues of a matrix
element of any given Lie group. However, it is possible
to relate the number of unit eigenvalues to the rank of the
group. We have proved that if a matrix Lie group G has
rank r, then it has at least one non-identity element with
r − 1 unit eigenvalues. Therefore, instead of exploring Lie
groups whose non-identity elements have no more than k

unit eigenvalues, we study compact semi-simple Lie groups
with rank no more than k+1 and design codes that are fully-
diverse subsets of it. Since semi-simple Lie groups can be
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written as a direct product of simple Lie groups, we £rst
consider simple, simply connected, compact Lie groups in-
stead of semi-simple ones with rank 2. As mentioned in the
introduction, there are three of them: SU(3), Sp(2) and G2.
Since Sp(1) = SU(2), and SU(2) constitutes the orthog-
onal design of Alamouti [10], the symplectic group Sp(2)
can be regarded as a generalization of orthogonal designs.

De£nition 3 (Symplectic Group) [11] Sp(n), the nth or-
der symptectic group, is the set of complex 2n×2n matrices
S obeying the Unitary condition: S∗S = SS∗ = I2n and
the symplectic condition: StJS = J .

where J =

[

0 −In
In 0

]

, St denotes the transpose of S

and S∗ denotes its conjugate transpose.
Sp(n) has dimension n(2n + 1) and rank n. We are

most interested in the case of n = 2. Actually, it is readily
shown that the maximum number of unit eigenvalues of any
non-identity element in Sp(2) is 2.

3. SP (2) FULLY-DIVERSE CODE DESIGN

From De£nition 3, it is easy to see that any 2n × 2n ma-

trix in Sp(n) has the form

[

A B

−B̄ Ā

]

for some complex

n× n matrices A and B. The group can be identi£ed as the
subgroup of unitary matrices with a structure that is simi-
lar to Alamouti’s 2-dimensional orthogonal design [10], but
here each entry is an n×n matrix instead of a scalar. Using
the unitary condition of S and singular value decomposition
of A and B, the following theorem can be proved.

Theorem 2 (Parametrization of Sp(n)) Any matrix S be-
longs to Sp(n) iff it can be written as

S =

[

UΣAV UΣBV̄

−ŪΣBV ŪΣAV

]

where U and V are any n× n unitary matrices, and
ΣA = diag (cos θ1, ... cos θn),ΣB = diag (sin θ1, ... sin θn)
for some real angles θ1, θ2..., θn. Ū and V̄ denote the con-
jugates of U and V .

Since any n× n unitary matrix has dimension n2, there
are all together 2n2 degrees of freedom in the unitary ma-
trices U and V . Together with the n real angles, θi, the di-
mension of S is, therefore, n(2n + 1), which is exactly the
same as that of Sp(n). Based on Theorem 2, the matrices
in Sp(n) can be parameterized by U, V and θis.

Now, let us look at the easiest case of n = 2. For sim-
plicity, we £rst let ΣA = ΣB = 1√

2
I2, by which 2 degrees

of freedom are lost. We further choose U and V as orthog-
onal designs with M -PSK and shifted N -PSK entries. The

following code is obtained.

CM,N =

{

1√
2

[

UV UV̄

−ŪV Ū V̄

]}

(4)

where U = 1√
2

[

ej
2πk
M ej

2πl
M

−e−j 2πl
M e−j 2πk

M

]

, and

V = 1√
2

[

ej(
2πm
N

+θ) ej(
2πn
N

+θ)

−e−j( 2πn
N

+θ) e−j( 2πm
N

+θ)

]

for 0 ≤ k, l <

M, 0 ≤ m,n < N and M and N are integers. θ is an an-
gle to be chosen later. The rate of the code is 1

2 (log2 M +
log2 N). The angle θ, an extra degree of freedom added to
the code to gain diversity product, is crucial in the proof of
the full diversity of the code although simulation results in-
dicates that the code always get its highest diversity product
at θ = 0.

Since the U and V in our code have an orthogonal de-
sign structure, it is not dif£cult to calculate the determinant
of the difference of any two signals in the code directly. Us-
ing this calculation, we can prove the following theorem.

Theorem 3 (Condition for full diversity) There exists a θ

such that the code CM,N in (4) is fully-diverse iff M and N

are relatively prime.

To get codes at higher rates, we can add the two degrees
of freedom in diagonal matrices ΣA and ΣB in by letting
ΣA = cos γiI2,ΣB = sin γiI2 for γi ∈ Γ. The full diver-
sity of the modi£ed codes can be proved similarly when θ

and the set Γ are properly chosen.

4. DECODING OF THE SP (2) CODE

One of the most prominent properties of our Sp(2) code
is that it can be seen as a generalization of orthogonal de-
signs. This property can be used to get linear decoding,
which means that the receiver can be made to form a sys-
tem of linear equations in the unknowns.

From (3), the ML decoder is equivalent to,

argmax
U,V

‖Xτ −
1√
2

[

U 0

0 Ū

] [

I2 I2
−I2 I2

] [

V 0

0 V̄

]

Xτ−1‖2F

= argmax
U,V

‖
[

U∗ 0

0 Ut

]

Xτ −
1√
2

[

I2 I2
−I2 I2

] [

V 0

0 V̄

]

Xτ−1‖2F

Note that the formula is quadratic in the entries of U and
V . Using the property that U and V constitutes orthogonal
designs, it can be shown that the ML decoder reduces to,

arg max
0≤k,l<M,0≤m,n<N

‖
[

A −C
B −D

]

α‖2F (5)

where A,B, C,D are 4 × 4 real matrices which only de-
pand on Xτ and Xτ−1 and α =

[

cos 2πk
M

, sin 2πk
M

, cos 2πl
M

,

sin 2πl
M

, cos 2πm
N

, sin 2πm
N

, cos 2πn
N

, sin 2πn
N

]t
is the vector

of unknowns.
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We can see form formula (5) that the decoding crite-
rion is quadratic in the sine and cosine of the unknowns.
Thus, it can be solved using the sphere decoder algorithm
[12]. By choosing M odd, the map f : θ → sin θ for
θ ∈ {0, 2π

M
, · · · , 2(M−1)π

M
} is a one-to-one and onto map.

Therefore, we can equivalently regard sin 2kπ
M

and sin 2lπ
M

to be our unknowns instead of k and l. And the same for
m and n. Also notice that there are actually 4 independent
unknowns instead of 8 in (5). We combine the 2i-th compo-
nents (of the form cosx) and the (2i+ 1)-th component (of
the form sinx) together in the sphere decoding.

5. SIMULATION RESULTS

In this section, the performance of the Sp(2) code is com-
pared with other codes. The block error rate (bler), which
corresponds to errors in decoding the 4× 4 transmitted ma-
trices, is demonstrated as the error event of interest.

In Fig 1, we compare our Sp(2) code of M = 5, N =
3 and rate R = 1.95 with rate 2 orthogonal design and a
differential Cayley code at rate 1.75. The number of receive
antenna is 1. At a bler of 10−3, the Sp(2) code is 2dB better
than the differential Cayley code, even though it has a lower
rate, and 4dB better than the orthogonal design.

In Fig 2, we compare our Sp(2) code with a group-
based diagonal code and the fpf code K1,1,−1 at rate 1.98
[4]. The number of receive antenna is 1. At a bler of 10−3,
2dB improvement is obtained by using the Sp(2) code in-
stead of a diagonal code, but the Sp(2) code is 1.5dB worse
than the K1,1,−1 group code. However, decoding K1,1,−1

requires an exhaustive search over the entire constellation.
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Fig. 1. Performance of Sp(2) code with differential Cayley
code and orthogonal design.
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Fig. 2. Performance of Sp(2) code with group-based diag-
onal code and K1,1,−1 code.
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