PROBABILITY OF ERROR FOR TRAINED UNITARY
SPACE-TIME MODULATION OVER A
GAUSS-INNOVATIONS RICIAN CHANNEL

Christian B. Peel and A. Lee Swindlehurst
Brigham Young University
Electrical and Computer Engineering Dept.
459 CB, Provo, UT 84602

chris.peel@ieee.org, swindle@ee.byu.edu

Abstract— The pairwise probability of error for trained uni-
tary space-time modulation over channels with a constant
specular component and time-varying diffuse fading is derived
in this paper. We consider the case where the diffuse channel
varies from sample to sample within a symbol according to
a first-order AR model. Our previous results are reviewed
which show that the effect of the time-varying diffuse channel
can be described by an effective SNR that decreases with
time. We derive pairwise probability of error expressions using
these effective SNR values, which are shown by simulation to
accurately describe performance.

I. INTRODUCTION

The use of multiple transmit and receive antennas in wireless
systems has received significant attention lately because of the
high data rates they potentially offer [1], [2]. Though initial work
has dealt with the situation where the receiver (and possibly the
transmitter) knows the channel between each transmit and receive
antenna, more recent work has focused on the case where to begin
with neither the receiver nor the transmitter possess channel state
information [3], [4], [5]. This latter scenario is usually dealt with
using trained modulation, assuming that the channel is constant
between training periods.

All of the above papers assume a piecewise-constant model of
the time-varying channel coefficients. Such a model accurately
describes the way a channel might appear in a time-division multiple
access or frequency-hopping system, and its effects are simple to
analyze. However, its inability to account for the memory of the
channel make it less attractive in other applications. In addition, the
fact that the time-varying channel is not truly piece-wise constant
leads to significant modeling errors. In this paper, we examine via a
probability of error expression the performance penalty incurred for
multiple-antenna trained modulation when the piece-wise constant
assumption is violated as the channel changes from sample to
sample.

To incorporate channel time variation into our analysis, we
use multiple first-order Gauss-innovations models to describe the
time evolution of the channel coefficients. The model provides
a reasonable fit to the temporal properties of physical channel
models (such as Jakes’ [6]) as will be illustrated with simulation
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results. Our analysis focuses on the performance of trained space-
time modulation when using unitary code matrices. After reviewing
results from previous work [7], [8] which indicates that the effect
of the Gauss-innovations model can be described by an effective
SNR that decreases with time, we obtain pairwise probability of
error expressions for this time-varying Rician channel model.

II. CHANNEL MODEL

Throughout the paper, we let CA'(0, 1) denote a zero-mean, unit-
variance, circularly symmetric complex Gaussian distribution. The
Frobenius norm will be denoted by || - || 7, the expectation operator
by E[-], and the determinant by | - |.

A. Fading Channel Model

Our focus is on a flat-fading communications environment with
M transmit and NN receive antennas, with signal transmission
occurring over T’ time instants. A complex channel coefficient
describes the effect of the propagation between each pair of transmit
and receive antennas. These channel coefficients are assumed to
be independent from element to element across the antenna array,
but not temporally white. At each receive antenna, interference and
other disturbances add temporally and spatially independent noise
to the signal.

We formalize these statements as follows: for m = 1,... ,M
transmit, and n = 1,... , IV receive antennas, at time instants ¢t =
0,1,...,7 — 1, the channel coefficient is hm n ¢, With the signal
transmitted from antenna m at time ¢ denoted by s¢ m. We assume
that the M x N matrix Hy formed from hy, ¢ is normalized so
that E[||H;||%] = M N, and the T x M matrix S formed from s,
is normalized so that E[||S||%] = T M. With these definitions, the
data at receive antenna n is written

M
Ttpn = V ﬁ mZ:lhm,n,tst,m + Wt,n , (1)

where we assume that the noise w¢,, is CA'(0,1). Due to the
normalizations defined above, p represents the SNR expected at
each receive antenna and does not depend on the number of transmit
antennas.

In the case where the channel is constant (H; = H, for t =
0,1,...,7 —1) then (1) reduces to the piecewise-constant model

of [4]:
_ [P
X=4/=SH+W. (@)
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Though this quasi-static channel model is theoretically attractive,
it is not always realistic, especially for environments with rapidly
moving users. In such situations (1) is more applicable. It is shown
in [8] that (1) can be written in a form similar to (2) with the
addition of a diagonal matrix modifying the signal strength at each
time instant. This analysis is done using a Gauss-innovations model
(see Section II-C) to describe the time evolution of the channel.

B. Specular and Diffuse Channel Components

In our analysis we will separate the specular and diffuse compo-
nents of the channel as follows:

Hy=+/1-BH* + /BH{ , 3)

where the specular part H® is assumed to be known and time-
invariant, and the elements of the diffuse component are modeled
as h¢, ., ~ CN(0,1). The only restriction on H* is a power

constraint E[||H*®||%] = MN, which maintains the relationship
in (1). We also decompose the signal power as p = p° + p?, where
PP = (=P 4
o= P, ®)

and the parameter 3 allows tuning between a fully specular channel
(B = 0) and a Rayleigh channel (8 = 1). In practice we expect the
channel to be composed of both diffuse and specular components,
in which case 0 < 8 < 1.

The probability of error expressions below assume a rank-one
specular component; in this case H*® is written as the outer product
of two fixed, but isotropically distributed random unit vectors [3]:

H* = VMNuv?. (6)

C. A Gauss-Innovations Fading Channel Model

In Section III we characterize the performance of space-time
modulation with the assumption that the current channel H,i:
occurs t samples after a reference (or estimated) channel H,. We
assume that between time r and t 4 r the dispersive component
of the channel Hf_H varies according to the following first-order
auto-regressive (AR) or Gauss-innovations model:

HY,, = VJaH? + V1= aiErye 7

where H? and E,i; have iid. CN(0,1) elements, E,i; is
independent from symbol to symbol and 0 < a; < 1. Under this
model, Ht‘1+, also has zero-mean, unit variance Gaussian entries. It
is important to note that the channel is not described by a single AR
model, but rather with multiple first-order models, one for each time
difference between the current sample and the reference channel.
A time-invariant channel is produced for oy = 1, while ax = 0
indicates a completely random time-varying channel. For trained
modulation ¢ &~ KT, and demodulation is based on a channel
estimate obtained K > 1 symbols in the past. The parameter a:
can be chosen to match the second order statistics of models based
on the mechanisms of physical propagation. Let r4p (¢) denote the
autocorrelation function of an element of H{. Solving the Yule-
Walker equations for ; in the first-order AR process (7) we obtain

which provides a reasonable choice for a;. For example, assuming
Jakes’ model of the land mobile fading channel [6], rpa(t) =
Jo(27 ft), where Jo(-) is the zeroth-order Bessel function of the
first kind, f = f4Ts, fq is the maximum Doppler frequency in

the fading environment, and T’ is the sampling period. Under this
model (8) leads to

ar = Jo(2mtf)> . )

This Gauss-innovations model is an appropriate approximation
when using the maximum-likelihood decoders of [4] that depend
only on a single reference channel. This fact is borne out by
the simulation results of Section IV, where excellent agreement
is obtained with data generated according to Jakes’ model, but
analyzed with the Gauss-innovations model.

D. Channel Estimation

A training signal of length T, is sent at the beginning of a frame,
after which data symbols of length T" are sent. We will consider
the maximum likelihood (ML) estimate of the channel:

i, = \/g(SfSr)_ISTHXT, (10)

where S, is the training signal, X, is the received training data,
and all parameters are assumed to be known except the diffuse
component of the channel HZ. Assuming unitary signals, the ML
estimate becomes:

rd | M om [ p° s\ _ pd M .
Hr - pdT'r S’r (X’V‘ - MSTH - H’r + pd—TTWT )
(11)

where H? and W, are the diffuse part of the channel and the
receiver noise, respectively, seen during training.

III. PERFORMANCE FOR TRAINED MODULATION

In this section we analyze the performance of space-time modu-
lation for a time varying channel where the decoder assumes that it
has perfect knowledge of the channel, although it uses an estimate
based on training. We assume the ML channel estimate described
above, and compare the resulting performance with that obtained
using the exact channel. An analysis similar to that presented below
applies to the channel tracking techniques presented in [9] or [10].

A. Effective SNR Matrices

We assume that an ML estimate of the channel is obtained at
some reference time r, and that the channel is constant during
training. Because of the temporal variation of the channel, the
quality of this estimate degrades with time. The theorem below
shows that this degradation can be described as an effective SNR
that decreases with time until training occurs again.

Theorem 1: Given the channel model of Section II, the effect
of the channel variation ¢ time samples after the channel estimate
is that of a time-varying effective SNR and is described by the
following equation:

ps S 8 Pd d d T
Xrgt = Mpt SH; + Mpt SH, +Wrt¢, (12)

where
Pts = diag{bO:bly'“ 1bT*1}
P} = diag{po,p1, - ,pr—1}

are diagonal matrices with elements given by

1
by = , 13
\/1 + tymar, + (1 — Qtymir,)p? (13)
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and

Qt+m+Rp
m = y 14
b \/1 + atymar, + (1 — tymar,)p? 14
where R, = T,
Proof: See [8]. |

As p — oo we find that the ESNR at each time instant ceases
to depend on p, and depends solely on the parameters of the time-
varying channel:

lim /p°Pf = 1/ Pia2y — Dyt as)
p—+00
lim v/piP! = DZ[AX(Iy — D) %, (16)
p—+o0

where D; is the diagonal matrix formed from

Q4 Rpy--- ,Qt+T—1+R,-In this case it is the time-variation
of the channel rather than the SNR that limits performance.

B. Probability of Error

Using the above results, we are able to derive probability of
error expressions for the general channel model introduced pre-
viously. Our analysis applies to a wide range of space-time coding
approaches, including the linear block coding schemes of [1], [11]
as well as unitary modulation [4], [12], [13]. We focus now on
modulation with unitary matrices, though similar results apply for
the linear codes. We first derive the pairwise probability of error for
the Rayleigh fading channel, and then consider the rank-one Rician
case.

Theorem 2 (P, for Trained modulation): Given the -effective
data model of (12) for a Rayleigh channel (8 = 1), and assuming
the ML decoder of [4] (which assumes the data model (2) and that

the channel H is known):
p
X —/—=SH
V St

the pairwise probability of error is

arg ) 17

max
1e{o,1,...,.L—1} P

1 oo —je

1 M
P. = — 1
" 1_:[1 + (W + jw)dr,

2mj

je

+(w —]w)d - 2w dmém] Ndw, (18)

where &, are the singular values of 1/pL (P:S1— S2), dm

are the values of the diagonal matrix 1/p- (P.—1I), and e =

— max { dmtdm
m—dm

Proof: We assume that there are two signal matrices in the
constellation, and begin by analyzing the probability of error given
that the signal S is sent:

2 2
[T
e|1 = (H SQH < X— pMSIH Sl) .
Let A = /pL(P,Si — S2) and A = UAV¥ be its SVD.

We can disregard U, since we may pre-multiply our received data
by U¥ without changing its distribution. Also, we may post-
multiply our constellation by V' without changing the probability of
error [12]. Then, with D 2 \ P (P,
expression for Pe:

P(tr{H"(A?

—I), we have the following

D)H + H"(A-D)W + W' (A-D)H}<0) .

Because A and D do not depend on whether S;1 or S2 was sent,
A
we note that P,; = P,|3 = Pe. Now, let

A*—D> A-D H
— H H __ v H
Z=[H" w ][A_D 0 ][W]_YRY.

Using the identity

A B
‘C T ‘:|A—BC| (19)
and results from [8] with R = I, we write
¢r(w) = |I+jw(A?—D? +w*(A-D)?" (20)

M
[T+ 5w —di) +w?(6m — dm)?] " @D
i=1

We choose as our contour C' = (—oo — je, 00 — je). The poles of
¢r(w) are all along the jw axis; we want to choose € > 0 so that we
may exchange the order of integration, but small enough that our
contour of integration does not include any other poles. Choosing
€ = —maxm, {ggz%:’m"} satisfies these constraints. Using (21) we
obtain the desired result. |
The integral in (18) can be easily evaluated using common numer-
ical techniques.

It is somewhat more difficult to obtain results for a Rician
channel; the methods described in [8] do not extend easily to
a non-Gaussian distribution. Rather than an exact expression, we
settle instead for an approximation assuming a rank-one specular
component. We assume that the ESNR matrices Py and P2 are
known at the receiver, and can be used in the ML decoder; we also
assume that diagonal signals are used. Under these assumptions the
probability of error P, is shown in [8] to be

ﬁ Oooo u2+1/4 Hm 1 [1 + (w + )pIBM(pm m) ] : (22)
P\ 128 _(@?+1/9)pBT/M (03 dm)?
b {_szl (E) "B TH(WEH1/4)pBT/M (b, dm)? } duw

where d,, are the singular values of S; — S3. We will see in
Section IV that (22) provides a good approximation.

IV. SIMULATION RESULTS

In Figure 1 we show simulation results using channel coefficients
from a geometrical single-bounce model [14], which is similar
to Jakes’ model. We consider an uplink scenario where the base
and mobile are separated by two thousand wavelengths (2000)), a
single base antenna is used, and two mobile transmitter antennas
are separated by A. The mobile is surrounded by a 200\ disk
of twenty five randomly placed scatterers, and is moving with a
normalized Doppler frequency of f; = 0.02. Each data point in
the figure is from one hundred experiments of 10* samples each. A
diagonal signal constellation containing two unitary matrices was
used. Results for simulations are shown with solid lines, while
analytic results assuming the Gauss-innovations model are shown
with dotted lines. Results from Theorem 2 for trained modulation
are shown along with results for differential modulation from [8]
for purposes of comparison. The excellent agreement between
simulation and analysis lends support to the model and probability
of error expressions presented in this paper.

Figure 2 presents probability of error performance as a function
of the specular parameter 8 with a rank-one specular component.
The simulation parameters were M = 2 transmit antennas, N = 2
receive antennas, a constellation of size L = 2, p = 10dB, and
coefficients that obey Jakes’ model with parameter f; = 0.003.
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Fig. 1. Comparison of differential and trained modulation using channel

data from a geometrical single-bounce model.
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Fig. 2. Performance as a function of specular parameter 3.

We show analytic and simulation results for trained modulation with
perfect channel estimation and differential modulation; the analytic
results are similar to those given in this paper and are found in [8].
In this scenario, the specular channel yields better performance than
a diffuse channel.

Figure 3 shows the behavior of trained unitary modulation versus
the length of the training interval. We let the training interval be
t = KM, and vary K from 1 to 10. The fading parameter fq =
0.003 was used in a fully diffuse (8 = 1) channel with signal to
noise ratio of p = 20dB. Simulations results are shown using results
from Theorem 2 as well as for trained modulation with channel state
information at the receiver (indicated with “CSIR” in the plots) and
for differential modulation, using results from [8]. The analytic and
simulation probability of error results agree well and show that
probability of error increases linearly as K increases. This is not
the entire picture, however, because the rate is increasing with K as
well, according to K /(K + 1). A detailed analysis of the training
frequency K which maximizes capacity is found in [15].

Fig.
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