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ABSTRACT

While the knowledge of each channel realization is not avail-
able in a system with differential space-time modulation,
channel correlation can be easily estimated without training
at the receiver, and exploited by the transmitter to enhance
the error probability performance. We develop a transmis-
sion scheme that combines transmit-beamforming with dif-
ferential space-time modulation based on orthogonal space-
time block coding. Error probability is analyzed for both
correlated and independent channels. Based on the error
probability analysis, we derive power loading coefficients
to improve performance.

1. INTRODUCTION

Recent advances in wireless communications show that multi-
antenna transmission systems can support high data rates
with low error probability. Without any channel state in-
formation (CSI) at the transmitter, space-time coding offers
an effective counter-measure against fading, and thereby re-
duces the error probability. Whenever (even partial) CSI
is available at the transmitter, it should be exploited to fur-
ther improve the performance of multi-antenna transmission
systems. Since in most cases, the transmitter cannot acquire
the CSI perfectly, utilization of partial CSI at the transmitter
has received considerable attention recently.

A general statistical model of partial CSI is presented
in [8, 12, 14]. Based on this model, a linear transformation
was applied to orthogonal space-time block coding (STBC)
to enhance the SER performance [8]. Two cases of partial
CSI, termed mean feedback and covariance feedback, were
studied to maximize channel capacity [12]; capacity max-
imization based on covariance feedback was also investi-
gated for multiple input multiple output (MIMO) systems
in [6]. The optimal beamforming and STBC that minimizes
symbol error probability were derived in [13] and [14], based
on channel mean and correlation, respectively. Note that all
these works require CSI at the receiver.

In this paper, we consider differential space-time mod-
ulation based on orthogonal STBC which was also investi-
gated in [3, 7] without partial CSI for independent, identi-
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cally distributed (iid) fading channels. Since practical multi-
antenna systems may exhibit strong correlation among fad-
ing channels associated with different transmit antennae on
the downlink [6, 10], we will focus on correlated channels.
While knowledge of each channel realization is not avail-
able in a differential space-time transmission system, chan-
nel correlations can be estimated at the receiver without
training, and fed back to the transmitter. Based on error
probability analysis, we will exploit the channel correlations
at the transmitter to combine differential space-time modu-
lation with transmit-beamforming, and thereby enhance the
error probability performance.

2. SIGNAL MODEL

Consider a multi-antenna transmission system comprising
NT transmit antennae, and a single receive antenna, sig-
naling over a Rayleigh flat-fading environment. Suppose
that the base station (BS) and the mobile user assume the
roles of transmitter and receiver, respectively. Let hm de-
note the channel coefficient between the mth transmit and
the receive antenna, which is a complex Gaussian random
variable with zero-mean. In a wireless environment where
the BS is elevated and unobstructed, it has been shown that
in practical systems with reasonable antenna spacing, chan-
nel gains associated with different transmit antennae exhibit
strong correlations [6]. Letting h := [h1, . . . , hNT

]T , we
define the channel correlation matrix as Rh := E[hhH],
where the superscript H (T ) denotes Hermitian (transposi-
tion).

The P symbols transmitted in the tth block are first col-
lected in an N × N space-time code matrix St = (1/P )
∑P

p=1(Φps
R
t,p+jΨps

I
t,p), t > 0 [3], where sRt,p and sIt,p are

real and imaginary parts of the complex symbol st,p, respec-
tively, i.e., st,p = sRt,p + jsIt,p, and N ×N matricesΦp and
Ψp satisfy the orthogonal conditions given in [3]. Drawing
st,p from M-PSK constellations, and letting |st,p| = 1, it
can be shown that the matrix St is unitary, i.e., SHt St = IN .
The N×N code matrixCt for differential space-time mod-
ulation is then written recursively as [3, 4, 5]

Ct = StCt−1, t > 0, (1)

with C0 = IN . Since St is unitary, matrix Ct is unitary
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too, by design. For an arbitrary NT , we may not be able
to find a square code matrix St with N = NT [3]. In this
case, we can construct a square code matrix St with N >
NT , findCt using (1), and transmit the first NT columns of
Ct from NT transmit antennae as in [3]. Mathematically,
letting Θ = [INT

0NT×(N−NT )]
T , the matrix codeword

transmitted over NT antennae in the tth block is CtΘ.
When the channel coefficients associated with different

transmit antennae are correlated, a modulation scheme ex-
ploiting the channel correlation at the transmitter is well
motivated. To this end, we will transmit the codewordCtΘ

along the eigenvectors of the channel correlation matrixRh

with proper power loaded on each eigenvector. This trans-
mission scheme, termed eigen-beamforming, was introduced
in [14] for coherent STBC over correlated fading channels.
The eigen-decomposition of matrix Rh can be written as
Rh = UΛUH, where the diagonal matrix Λ contains the
ordered eigenvalues of Rh, and the unitary matrix U con-
sists of the corresponding eigenvectors. Then, the trans-
mitted signal in the tth block is given by the N × N ma-
trix Xt =

√
PEsCtΘDU

H, where the diagonal matrix D
contains power loading coefficients which will be specified
later in Section 3.3. We have the following constraint on
D:

∑Nt

i=1[D]2i,i = 1. Using this constraint, we can verify
that Tr(XtX

H
t ) = PEs, where Es stands for the energy per

transmitted symbol. We can also write Xt as a recursion,
initialized byX0 =

√
PEsΘDUH, as [c.f. (1)]

Xt = StXt−1, t > 0. (2)

Comparing (1) with (2) reveals that the fundamental differ-
ential transmission equation is not changed by the loaded
transmit eigen-beamforming matricesDUH. From (2), it is
seen that we need to beamform and power load only in the
first transmitted block X0; and after the first block, signals
will be automatically transmitted along eigen-beams with-
out any beamforming operation. The received signal in the
tth block can be written in an N × 1 vector yt as

yt = Xth+wt, (3)

where wt contains complex additive white Gaussian noise
(AWGN) with mean zero, and variance N0/2 per dimen-
sion. We assume that h remains invariant over two consec-
utive blocks, and we will detect St based on yt−1 and yt.

Using the fundamental differential receiver equation yt =
Styt−1+wt−Stwt−1, we can detect codeword St as Ŝt =
arg maxS Re(2yHt−1S

Hyt) [3, 4]. Let zp,R := Re(2yHt−1

ΦH
p yt), zp,I := Re(−j2yHt−1Ψ

H
p yt), and zp := zp,R +

jzp,I . Due to the structure of St, the detector for the code-
word St reduces to a symbol-by-symbol detector [3]

ŝt,p = arg max
s

Re(zps
∗). (4)

For QPSK, s = (±1± j)/
√
2, eq. (4) becomes

ŝRt,p = sign(zp,R), ŝIt,p = sign(zp,I). (5)

3. PERFORMANCE AND POWER LOADING

3.1. Exact BER of BPSK and QPSK constellations

Consider the decision variable zp,R in (5). If sRt,p takes ±1
values with equal probability, the BER of sRt,p is given by
Pb(e) = P (zp,R < 0|sRt,p = 1). It can be shown that this
error probability is the same for sRt,p and sIt,p, ∀p; thus, it
also stands for the overall BER. The decision variable zp,R
can also be expressed as

zp,R = yHt−1Φ
H
p yt + y

H
t Φpy

H
t−1 = yHΦ̄py, (6)

where Φ̄p :=

[

0 ΦH
p

Φp 0

]

. It is seen from (6) that zp,R

is a quadratic form of the complex Gaussian random vector
y. Thus, the Laplace transform of the pdf of zp,R is given
by [9, p. 595]

φ(ω) :=
1

det(I+ ωRyΦ̄p)
=

1
∏2N

i=1(1 + ωλi)
, (7)

where λi is the eigenvalue of matrix A := RyΦ̄p. Then,
the error probability can be found as [2]

Pb(e) = −
∑

ωi>0

Res[φ(ω)/ω;ωi], (8)

where ωi is a pole of φ(ω)/ω, and Res[f(x);xi] denotes
the residue of f(x) at xi. From (7), we have ωi = −1/λi,
if λi 6= 0. To evaluate the BER in (8), we need to find the
eigenvalues ofA. In [1], we prove the following proposition
and corollary.

Proposition 1 The matrixA is similar to

G :=

[

λB,1Dh λB,2(Dh +N0IN )
λB,1(Dh +N0IN ) λB,2Dh

]

, (9)

whereDh := PEsΘD2ΛΘH; λB,1 = (α+j
√

|α2 − 4|)/2
and λB,2 = (α−j

√

|α2 − 4|)/2 are two eigenvalues of the
matrix B1 := CH

t ΦpCt−1.

Corollary 1 WithDhi := [Dh]i,i, the 2N eigenvalues ofA
are given by

λi =
1

2

(

αDhi ±
√

α2D2
hi + 4(N2

0 + 2DhiN0)

)

,

i = 1, . . . , N.

(10)

Given these eigenvalues, we are ready to evaluate the
BER using (8). Differential space-time modulation based
on orthogonal STBC was studied for iid channels in [3, 7],
but exact BER analysis was not provided. The BER analysis
presented here is applicable to both correlated and indepen-
dent Rayleigh fading channels. If beamforming and power
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loading are not used, Proposition 1 still holds true; thus,
we can calculate the eigenvalues of G numerically, which
in turn enables us to evaluate the BER. If beamforming
and equal power loading are employed, then the matrix G
has eigenvalues identical to those without beamforming and
power loading. Therefore, these two cases have the same er-
ror probability performance, which implies that beamform-
ing alone does not improve the performance. This motivates
appropriate power loading to reduce the error probability.

3.2. Approximate SER of M-PSK constellations

It is difficult to obtain the exact BER or SER in closed form
for any M-PSK other than BPSK and QPSK. Thus, we will
also derive an approximate SER for any M-PSK constella-
tion, which is useful for the power loading algorithm. If
h̃ := DUHh and C̃t := CtΘ, then zp,R and zp,I in (4)
can be expressed as zp,R = 2Es|h̃|2sRp + w1 + w3 + w5

and zp,I = 2Es|h̃|2sIp + w2 + w4 + w6, where w1 :=

2Re[wH
t−1Φ

H
p StC̃t−1h̃], w3 := 2Re[h̃HC̃H

t−1 Φ
H
p wt], w5

:= 2Re[wH
t−1Φ

H
p wt], and w2, w4, w6 are defined in a way

similar to w1, w3, w5, respectively, with Φp replaced by
jΨp. When the SNR is high, w5 and w6 are negligible;
thus, zp = zp,R + jzp,I is well approximated by

z̃p = 2Es|h̃|2sp + w, (11)

where w = w1 +w3 + j(w2 +w4). Based on (11), it is ar-
gued in [3] that differential modulation incurs 3-dB penalty
in SNR compared with orthogonal STBC with coherent de-
tection, since noise power is doubled. However, it is not
clear if we can use SER formulas for coherent modulation
to calculate an approximate SER for differential modulation
based on (11), since the phase of z̃p is disturbed by the noise
w, and we do not know whether the real and the imaginary
parts of w are correlated or not. The following fact, which
is proven in [1], enables us to obtain an approximate SER.

Fact 1 Re(w) and Im(w) are uncorrelated, and have iden-
tical variance σ2 = 4|h̃|2N0.

Based on this fact, we see that the signal model (11) is the
same as that of M-PSK modulation with maximum ratio
combining (MRC) [11, p. 266]. Furthermore, SER of M-
PSK can be calculated by [11, p. 271]

Ps(e) =
1

π

∫ (M−1)π/M

0

M
(

− gPSK

sin2 θ

)

dθ, (12)

where gPSK := sin2(π/M), and M(·) is the moment gen-
erating function (MGF) of the random variable Es|h̃|2/(2N0).
Since the instantaneous SNR of z̃p is Es|h̃|2/(2N0), the ap-
proximate SER derived from (11) is 3 dB worse than that of
coherent modulation with the same transmitted power.

3.3. Power Loading

Similar to [8, 14], we will minimize the Chernoff bound of
SER given in (12), which in turn will reduce the actual error
probability. From (12), we can find the Chernoff bound of
Ps(e) as follows Ps,bound(e) = (M − 1)/(M

∏NT

i=1 [1 +
gPSKEsλR,i[D̄]i,i/(2N0)]) [14], where λR,i is the eigen-
value ofRh, and D̄ := D2. To select power loading coeffi-
cients, we minimize Ps,bound(e) with respect to D̄ with the
constraints [D̄]i,i ≥ 0, and Tr(D̄) = 1. This optimization
problem has been formulated and solved in [14]. The solu-

tion is [D̄]i,i =
1
N̄T

+ 2N0

gPSKEs

(

1
N̄T

∑N̄T

l=1
1

λR,l
− 1

λR,i

)

[14],

where N̄T (0 < N̄T ≤ NT ) is the number of beams that
transmit signals, given the transmitted power budget Es. For
the selection of N̄T and detailed description of the power
loading algorithm, we refer the reader to [14].

While the works in [3, 7] show that orthogonal STBC
can be modified to facilitate differential modulation and de-
tection, our work here reveals that the loaded eigen-beam-
forming derived in [14] for coherent STBC, can also be used
in a differential STBC setup.

4. SIMULATIONS AND NUMERICAL RESULTS

We consider a linear array of NT = 4 antennae at the trans-
mitter, and NR = 1 antenna at the receiver. The NT trans-
mit antennae are equispaced by d. We assume that the di-
rection of arrival is perpendicular to the transmitter antenna
array. Let λ be the wavelength of the transmitted signal, and
∆ denote the angle spread. When ∆ is small, the channel
correlation can be calculated as [Rh]m,n ≈ 1

2π

∫ 2π

0
exp[−j

2π(m− n)d∆sin θ/λ]dθ [10]. In our analysis and simula-
tions, we will consider two channels: channel 1 has d =
0.5λ and ∆ = 5◦, while channel 2 has d = 0.5λ and
∆ = 25◦. Channels are normalized so that Tr(Rh) =
NT . For channel 1, the eigenvalues of Rh are in Λ1 =
diag(3.81849, 0.18079, 0.00071, 0.00001); and for channel
2, we have Λ2 = diag(1.790, 1.741, 0.454, 0.015). QPSK
constellations will be adopted. In all plots, the SNR is defined
as SNR := Es/N0. We denote power loading in Section 3.3
as the optimal power loading in the sense that it minimizes
the Chernoff bound of the approximate SER.

Fig. 1 compares simulated against exact BER. In sim-
ulations, Rh is assumed perfectly known at the transmit-
ter. The correlation matrix of channel 1 has two very small
eigenvalues: if we use equal power loading, the transmitted
power along two eigenvectors corresponding to these two
small eigenvalues is wasted in the SNR region of practical
interest. Hence, the optimal power loading outperforms the
equal power loading by more than 3 dB in the SNR region
of interest. Channel 2 is less correlated; thus, the perfor-
mance gap between optimal power loading and equal power
loading is smaller, but still noticeable. Recall that the per-
formance of differential modulation with beamforming and
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Fig. 1. BER performance,Rh known.
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Fig. 2. BER performance,Rh estimated.

equal power loading is the same as that of differential mod-
ulation without beamforming. Hence, these BER curves
demonstrate clearly the advantage of combining differen-
tial modulation with optimally loaded beamforming. Fig. 2
depicts the the error probability whenRh is estimated using
the detected symbols [1]. We see that when the SNR is rea-
sonably high, using estimated Rh instead of Rh does not
degrade the performance.

5. CONCLUSIONS

We have analyzed the error probability performance of dif-
ferential space-time modulation that relies on orthogonal
space-time block coding. Based on this performance analy-
sis, combining differential space-time modulation with trans-
mit-beamforming and power loading was shown to enhance
the error probability performance in correlated channels.
Both analytical and simulation results confirmed that con-
siderable performance gain can be achieved.
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