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ABSTRACT

I'n wireless communication systems, channel stateinfor-
mation is often assumed to be available at the receiver. Tra-
ditionally, atraining sequence is used to obtain the estimate
of the channel. Alternatively, the channel can be identified
using known properties of the transmitted signal. However,
the computational effort required to find the joint ML solu-
tion to the symbol detection and channel estimation problem
increases exponentially with the dimension of the problem.
To significantly reduce this computational effort, we formu-
|ate the af orementioned problem in away that makesit pos-
sibleto solveit viathe use of sphere decoding, an algorithm
that has polynomial expected complexity. We also provide
simulation results and a complexity discussion.

1. INTRODUCTION

The pursuit for high-speed data services has resulted in a
tremendous amount of research activity in thewireless com-
munications community. To obtain high reliability of the
transmission, particular attention has been payed to the de-
sign of receivers (see, e.g., [1] and referencestherein).

In the system design, one often assumes knowledge of
the channel coefficients at the receiver. These are typically
obtained by sending a training sequence, thus sacrificing
a fraction of the transmission rate. However, in practical
systems, due to rapid changes of the channel and/or lim-
ited resources, training and channel tracking may be infea-
sible. One possible remedy is to differentially encode the
transmitted data and thus eliminate the need for the chan-
nel knowledge. Another oneis to exploit known properties
of the transmitted data to learn the channel blindly — for
instance, one can exploit the fact that the transmitted data
belongsto afinite alphabet.

We consider a problem of joint maximum likelihood
(ML) channel estimation and signal detection in a commu-
nication system where the transmitter uses only one antenna
but the receiver employs multiple antennas. Let NV denotes
the number of receive antennas and let T' be the length of
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a data packet during the transmission of which the channel
can be assumed to be constant. Then the channel output can
be written as

X =hs* +W, 1)

whereh € CV*! is the single-input multi-output (SIMO)
channel gain, s € CT*! isthetransmitted symbol sequence,
and W € ¢V*T isan additive noise matrix whose el ements
areassumed to bei.i.d. complex Gaussian random variables
C(0,0?). Furthermore, the entries in s are assumed to be
unitary, i.e.,

s> =1, k=1,2,...,T. 2

[Note that the sphere decoding algorithm performsthe clos-
est point search in arectangular | attice and the available ex-
pected complexity results assume the same. To make use
of them, in this paper we shall assume that s;, belongsto a
QPSK constellation. However, extension of sphere decod-
ing to the detection of PSK-modulation schemes is readily
available[5].]
The joint ML channel estimation and signal detection
problem can be stated as follows:
- * (12
,nin, | X —hs™[|%, @)
where ST denotesthe (finite) 7'-dimensional integer lattice.
Problem (3) is a mixed optimization problem: it is a least-
sguares problem in h and an integer least-squares problem
ins. Traditionally, the solution to the integer least-squares
problems is found by an exhaustive search over the entire
symbol space. The complexity of exhaustive search is ex-
ponential in 7" and often infeasible in practice. Therefore,
low-complexity heuristic techniques, usualy iterating be-
tween the s and h estimation, are often employed (seeg, e.g.,
[2] and referencestherein). On the other hand, in communi-
cation applications, the sphere decoding [3] is recognized
as a technique for solving integer least-squares problems
at polynomia expected complexity [4]. In this paper, we
show how to employ the sphere decoding algorithm to solve

ICASSP 2003




the mixed problem (3). The agorithm requires no channel
knowledge at the receiver and no iterations. The expected
complexity for large SNRs is found. Simulation results are
also included.

2. SOLVING THE JOINT PROBLEM

For any given s, the channel h that minimizes (3) isgiven
by

. , 1
b= Xs/|ls|* = =X, ()

where we used the assumption that |s;|? = 1, for any k.
Substituting (4) in (3) gives

1
| X (I — =ss*)||?> =tr(X P, X*) = const — Ts*X*Xs

=P,
Hence solving (3) is achieved by solving

max [s" X" Xs]. (5)
seST
Let A = Amax (X*X) bethe maximum eigenvalue of X * X,
andlet p > X (eg.,, p = tr(X*X)). The problem (5) is
equivaent to

min s*(pI — X*X)s. (6)
seST S——r
=H

The optimization problem (6) is aninteger | east-squares prob-
lem and a straightforward way to solve it is via exhaus-
tive search [2]. However, note that due to the choice of p,
the matrix 7 is positive definite and therefore it allows for
Cholesky factorization

H = R*R, 7

where R is an upper-triangular matrix. Thus the sphere de-
coding algorithm of Fincke and Pohst [3] can be applied to
solve (6). Rather than exhaustively searching over the en-
tire lattice ST, the sphere decoding algorithm performs a
limited search inside a hypersphere of radius r, i.e., finds
the point s that minimizes (6) among al lattice points that
satisfy

s*X*Xs < rZ (8)

[More about the choice of the radius r in the next section.]

The closest lattice point to the origin inside the sphereisthe

solution to (6). The algorithm can be stated as follows:
Input: radiusr, matrix R = [r;;], 1 <i,j <T.

1. Sek=T,r,=r.

2. (Boundsfor si) Set z = -,
[—z] -1

3. (Increase sy) s, = s + 1. If s, < UB(sg) goto5,
elseto 4.

UB(sg) = |z], sk =

4. (Increase k) k = k + 1; if k = T + 1, terminate
agorithm, elsego to 3.

5. (Decreasek)lfk_lgotOG Elsek = k — 1,

Skjk—1 = E] k+1 r“ SJ'TL = TL+1 Tk+1 1 (Skt1—
Sky1lke2)”, andgoto 2,

6. Solution found. Save's and goto 3.

[Note that in order to directly employ sphere decoding, we
need to write (1) in its “rea-equivalent” form. For more
details, see, e.g., [4].]

The sphere decoding algorithm can be interpreted as a
generalized nulling and canceling (see, e.g., [6]) where, &f -
ter acomponent of the vector s that satisfies (8) isfound, its
contribution to s* X * X's is subtracted. However, unlike in
nulling and canceling, componentsof s are never fixed until
an entirevector s which satisfies (8) isfound. Therefore, the
algorithm essentially performs a search on thetree, asillus-
trated in Figure 1, where the nodes on the k" level of the
tree correspond to the vectors|[s; . . . si]. The complexity of

Fig. 1. Tree search of the sphere decoding algorithm.

the algorithmis proportional to the number of nodes visited.
It depends on the choice of search radius. The choice of the
radius and complexity of the algorithm are discussed in the
next section.

3. CHOICE OF THE RADIUSAND COMPLEXITY
OF THE ALGORITHM

A simple heuristic for solving (3) consists of finding the
eigenvector corresponding to the maximum eigenvalue of
X*X (or, equivaently, the dominant right singular vector
of X) andthen projectingitonto S (i.e., rounding each en-
try). This heuristic can also be exploited as a starting point
of the sphere decoding search —the norm of the heuristic so-
Iution can be used as the search radius. However, we cannot
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say much about the complexity of sphere decoding for this
deterministic choice of the search radius.

Alternatively, when the distribution of the objective of
the minimization is known, one can make a probabilistic
choice of the search radius. In [4], the objective of the min-
imization is chi-sguare distributed, and the radius is chosen
according to the variance of that distribution, scaled in such
away that the probability of finding a point inside the sphere
is very high. Furthermore, the expected complexity of the
agorithmis found and shown to be polynomial over awide
range of SNRs. We shall show next that the argument in (6)
has a chi-square distribution at high SNRs. This suggests a
probabilistic choice of the search radius. Furthermore, the
expected complexity results of [4] extend to the current pa-
per.

Assume that SNR > 1. Consider the eigenvalue de-
composition of X * X,

Now, taking p = A we can write the objective of minimiza-
tionin (6) as

[N~

X'X=a é][é\ RH

s*(pl — X*X)s =

= s*G(\I - AN)G*s 9)
Furthermore,

X*X = |h||?ss* 4+ sh*W + W*hs* + W*WW(10)
= Ma* + GAG* (12)

Notethat for SNR > 1,

-t (37) ().

and hence, at high SNRs, A and A become
A=T|h|? A=0. (12)
Combining (10), (11), and (12), we obtain

G*"(X*X)s

AG*s + (G*s)(h*W's) +
+ G*W*hT + G*W*Ws
= A(G*s)

Neglecting the higher order terms,

NG*s) = —G*W*hT

Therefore, for high SNRs, (G*s) is circular Gaussian with
zero mean. To find its variance, note that
Wih
TG*W*h = TG* : ,
Wih
where W}, isthe k*" column of W. Also, note that
E [W;hh*W;] = E[0*W;W;h] = ¢°||h||?0x

Therefore,

T2
Fcov(G*W*h)

N

cov(G*s) =

T2 T
= F||h||2021 = XUQI

= To*(\ —A)7H,
where A = 0 was inserted for convenience. Therefore,
(G*s) ~ N [0, To* (AT — A)7'].

At high SNRs,

and, therefore,
(G*s) ~ N [o, T6>(A — M) ],

where 62 is an estimate of ¢2. This estimate can be ob-
tained (see, e.g., [7]) as the mean of the (V — 1) smallest
eigenvalues of X X'* (or, dternatively, the smallest (N — 1)
non-zero eigenvalues of X *X).

In summary, we have shown that the scaled termin (9),

1 * A\ [/ A *
e (5T G)AT - A)(Gs)

is chi-square distributed with 2(7" — 1) degrees of freedom.
Thus we can choose the search radius 2 = aT'o? so that

oT
/ YA, T — 1)d\ = py, (13)
0

where~(-, -) denotes an incomplete gammafunction and p,
isset closeto 1, say, 0.99. Furthermore, the expected com-
plexity results derived in [4] hold.

Remark: Notethat |R| = 0 for p = \. Therefore, to pre-
vent any possible numerical problems we prefer to choose
p > ), as stated in Section 2. Then the search radius may
be chosen as

T’I:(p—j\)-{—r,

where r is chosen asimplied by (13).
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4. SSIMULATION RESULTS

We consider a SIMO system employing n = 4 receive an-
tennas and transmitting datain blocksof lengthT = 20. We
compare the BER performance of the sphere decoding algo-
rithm and the iterative least squares with projections (IL SP)
algorithm (see, e.g., [2], [8]). [Simulation results are ob-
tained by performing Monte Carlo runs in which h and W
arevaried.] The ILSP essentialy finds the least squares es-
timate of the symbols and projects it onto the space S7' to
obtain the symbol estimate §. Then § is used to update the
estimate of the channel and thetwo af orementioned stepsre-
peated until convergence. As shown in Figure 2, the sphere
decoding agorithm significantly outperforms the heuristic
one. Figure 3 shows the complexity exponent, defined as

—— sphere decoding
— — ILSP

107k

6 8 10 12 14 16 18 20 22
SNR (dB)

Fig. 2. BER comparison of sphere decoding and IL SP algo-
rithms, n =4, T = 20.

e = logy F, where F' denotes the total number of opera-
tionsrequired to detect avector s. [For the sphere decoding,
the total complexity is a sum of the operations for the QR
factorization and the sphere decoding search]. It is evident
that the sphere decoding has roughly cubic complexity over
the range of SNRs of interest.

5. SUMMARY AND CONCLUSION

We considered the joint ML channel estimation and signal
detection problem for single-input multiple-output wireless
channels. To reduce the computational effort, we formu-
lated the design problem so that it can be solved via the
use of sphere decoding. It was shown that the agorithm,
when applied to the problem herein, has polynomial ex-
pected complexity. The performance of the agorithm and
its complexity were illustrated with an example. The exten-
sion to the multiple-input multiple-output scenario will be
presented in a future paper.

3.6
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Fig. 3. Expected complexity exponent, n = 4, T' = 20.
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