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ABSTRACT

In this work, we investigate the signal detection for MIMO
systems with imprecise channel knowledge. The optimal
detector is one which best matches the “total” observation
matrix and a “total” signal matrix which has a finite alphabet
constraint and a Sylvester structure constraint. An iterative
local optimization with interference cancellation (LOIC) al-
gorithm is proposed to achieve low complexity and exploit
the finite alphabet constraint. Simulation results show that
our proposed algorithms can detect the signals with BER
close to the case of perfect channel knowledge, if a rough
channel estimate is available initially.

1. INTRODUCTION

In wireless MIMO communications, extensive researches
have been conducted on the signal estimation and detection
for completely known (perfectly trained) and completely
unknown (blind) channel models. However, in practice, nei-
ther model is realistic because wireless channels are slowly
time-varying, as a result of physical channel impairments
and traffic dynamism.

In this paper, we consider the signal detection for MIMO
systems withimprecise receiver channel knowledge:

y(z) = H(z)x(z) + n(z),H(z) = H̄(z) + ∆H(z), (1)

where the channel transfer functionH(z) is assumed to com-
prise of a known part̄H(z) and an unknown part∆H(z).
The channel imprecision can be the channel estimation er-
ror as a result of imperfect training, or alternatively be the
gradual change in the channel response.

Assuming each entry of∆H(z) andn(z) is i.i.d. Gaus-
sian distributed, the generalized maximum likelihood de-
tector (GMLD) is the proposed formulation for signal de-
tection. Signal estimation techniques such as LS and TLS
can provide initializations which hopefully should reside in
a local vicinity of the true signal. In order to further im-
prove the detection accuracy, the structural and finite alpha-
bet constraints should be effectively exploited. In this pa-
per, we aim at designing iterative signal detectors with low
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complexity which can utilize the constraints to gradually
improve the match of the signal estimate and the channel es-
timate with the observation. The proposed method operates
as a sequence of local optimizations with the interferences
from out-of-window symbols cancelled.

2. CHANNEL MODEL AND GMLD

2.1. Channel Model

Definition 1 (Sylvester Matrices)
The Row-Sylvester Matrix of H(z) = H0 + · · · + Hdz

−d

with ξ block rows is defined as:

ΓR
(ξ)[H(z)] ≡




H0 H1 · · · Hd 0 · · · 0
0 H0 H1 · · · Hd · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 H0 H1 · · · Hd


 .

The Column-Sylvester Matrix of H(z) with ξ block columns
is defined as:

ΓC
(ξ)[H(z)] ≡

(
ΓR

(ξ)[HH(z)]
)H

. (2)

Consider a MIMO-ISI channel with ISI-degreed: H(z) ≡
H0 + H1z

−1 + · · · + Hdz
−d. Note that the cased = 0

particularizes to the frequency flat channel. LetM andN
denote the number of transmitting and receiving antennas,
respectively. We assume a block fading scenario where the
channel remains constant for the duration of the coherence
interval. LetT denote the block size (in symbols) which
is less than the coherence interval length. Additionally, we
assume a zero-padding of lengthd is appended at the end
of a block transmission ofT channel uses so that the inter-
block interference is eliminated. With these assumptions,
we can write the channel model as (1).

With the definition of the following quantities:̄H ≡
[H0 H1 · · · Hd], ∆H ≡ [∆H0 ∆H1 · · · ∆Hd], X ≡
ΓR

(d+1)[x(z)], Y ≡ [y
0

y
1
· · · y

T+d−1
], the imprecise

channel model considered in this paper is:

Y = HX + N = (H̄ + ∆H)X + N (3)

∆H[i, j] ∼ i.i.d. N(0, 1) (4)

N[i, j] ∼ i.i.d. N(0, 1), independent of∆H (5)
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where[i, j] denotes the(i, j)th entry of a matrix.
Normalization: Note that the channel model (3)-(5) has

already been normalized without loss of generality. Sup-
pose initially the unnormalized channel model is given as:

Yo =
√

SNR · σ2
N/M(H̄o + σH∆H)Xo + σNN, (6)

whereSNR is the total SNR at all transmit antennas and
each element ofXo belongs to the normalized finite constel-
lation set, e.g. BPSK. After normalization we would have:

1
σN

Yo =
(

1
σH

H̄o + ∆H
)(√

SNR · σ2
H

M
Xo

)
+ N.

Training Form: Consider the following channel model:

Yt = Ho(σN/σHI) + σNNt, (7)

Yo = Ho(
√

SNR · σ2
N/MXo) + σNN. (8)

This can be explained as a communication transaction where
pilot symbols are transmitted to learn the channel before the
data transmission: (1) start with adiffuse prior assump-
tion on Ho, that is, the inverse of the covariance matrix
of each row ofHo is set to be0, reflecting the lack of
channel knowledgea priori, (2) transmit a training block of
σN/σHIM followed byd padding zeros to learn the chan-
nel, after whichHo[i, j]|Yt ∼ N(σH/σNYt[i, j], σ2

H). With
H̄o ≡ σH/σNYt and∆H ≡ Nt, we can arrive at (6) and
consequently (3). Hence we are motivated to rewrite (3) as
(9) and call it thetraining form of the channel model:

[H̄ Y] = H[I X ] + [−∆H N]. (9)

The discussion above demonstrates how uncertainties
due to imperfect training can be incorporated into (3). More
generally, a Bayesian statistics framework is proposed in [1]
as a unifying model for MIMO-ISI channel which can char-
acterize diverse assumptions on the channel knowledge.

2.2. Generalized Maximum Likelihood Detector

For the channel model in training form (9), consider the
generalized maximum likelihood detection (GMLD) with
H andX being the unknown parameters:

[H X ]GMLD = arg max
H,X∈SF

p([H̄ Y]|X ,H) (10)

= arg min
H,X∈SF

‖[H̄ Y] − H[I X ]‖2
F . (11)

whereS andF denote structurally and finite alphabet con-
strained sets, respectively1. It can be shown [1] that for
wide-sense stationary and ergodic inputs, GMLD is a good
approximation of the optimal maximum likelihood detector
which minimizes the block error probability.

1In the sequel, the simplified notationsS andF are used to represent
sets of matrices of different sizes. The specific constraints should be obvi-
ous from the context.

3. ITERATIVE SIGNAL DETECTION

3.1. Initialization with TLS or LS

Formulation (11) can be rewritten as:

X = arg min
X∈SF

∥∥[H̄ Y] − [H̄ Y][I X ]†[I X ]
∥∥2

F
, (12)

where† is the Moore-Penrose pseudo inverse. Formulation
(12) bears a pleasing geometric explanation: findX ∈ SF
to maximize the projection of the “total” observation matrix
[H̄ Y] onto the row span of the “total” transmitted signal
matrix [I X ].

If the constraints are dropped andN > M(d + 1), the
solution is given by TLS, which can be obtained in two
steps: (1) set the row span of[I X ] to the subspace spanned
by the firstM(d + 1) principal components of[H̄ Y]. This
step performs dimension reduction. (2) given the row span
of [I X ], use the known partI as a signature to resolve the
ambiguity inX . After these, the estimateXTLS should be
quantized to a valid initializationX (0)

TLS ∈ SF :

X (0)
TLS = arg min

X∈SF
‖X − XTLS‖2

F . (13)

For frequency flat MIMO channels, the conditionN >
M(d + 1) is satisfied if the channel is PR (prefect recover-
able) by linear filtering in the ideal noise-free case.

For MIMO-ISI channels withN ≤ M(d+1), TLS is not
applicable. An alternative initialization can be obtained by
least squares constructed from the nominal channelH̄(z):

x(0)
LS = Q

[(
ΓC

(T )[H̄(z)]
)†

y
]

, (14)

whereQ[·] is the quantization operation,x ≡ [xH
0 · · · xH

T−1]
H ,

andy ≡ [yH
0

yH
1

· · · yH
T+d−1

]H .

3.2. Iterative Projection

Formulation (11) leads to an iterative optimization proce-
dure which alternates between optimizing overx and opti-
mizing overH, given in Algorithm 1. To simply notation,
we introduceH ≡ ΓC

(T )[H(z)]. It can be shown that such
an procedure is a particularization of the EM (expectation
maximization) algorithm [2] withH being themissing data.
Since each step cannot increase the cost function (11), Al-
gorithm 1 will converge to a local minimum.

Algorithm 1 (Iterative Projection (IP))

1. Initialize X as X (0)
TLS or X (0)

LS .

2. Fix X , and estimate H as H = [H̄ Y][I X ]†.

3. Fix H, and optimize over X .

X = arg min
X∈SF

‖Y − HX‖2
F (15)

= arg min
X∈SF

‖y −Hx‖2 (16)
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4. The above procedure may be repeated.

3.3. Local Optimization with Interference Cancellation

The bottleneck of Algorithm 1 is on (16), which is a quadratic
minimization with finite-alphabet constraints. Finding the
exact minimization for (16) is equivalent to maximum like-
lihood sequence detection for a known channel. With the
technique of dynamic programming, it has been shown in
[3] that the detection complexity isO(2M(d+1)) per user
per symbol for BPSK.

One way to reduce the complexity is to use quantized
linear estimators such as LS or MMSE. For quantized lin-
ear estimators, the finite alphabet constraint is only utilized
on a coarse granularity, i.e., as a final quantization step for
the sequence estimate. Another disadvantage for quantized
LS is that the complexity is still high. If the quantized LS
solution is used for Algorithm 1,H†y needs to be calculated
in each iteration whereH is of sizeN(T + d) × TM .

It can be verified that‖y−Hx‖2 is convex inx ∈ RMT .
The convexity assures that the unconstrained global optimal
xLS can be reached by a series of local search. However, the
finite alphabet constrained setF is not a convex set. Never-
theless, the convexity argument motivates us to design low
complexity (and suboptimal than MLD) algorithms based
on greedy search to solve (16).

Rewrite (16) as:

min
x∈F

‖y −H[(I − Wi) + Wi]x‖2 (17)

whereWi is a series of “windowing” matrices, i.e., thej-th
element ofxi ≡ Wix is either thej-th element ofx (in
window) or0 (out of window). We propose to approximate
(17) with iterative optimizations over each window. Given
each windowWi, we restrict the minimization (17) to that
over the in-window symbols, leaving out-of-window sym-
bols fixed or equivalently having their interferences can-
celled. Introducer(x) ≡ y − Hx. The details are given
in Algorithm 2, which is named local optimization with in-
terference cancellation (LOIC).

The potential advantages of Algorithm 2 are two fold:
(1) it operates on a local window and thus further reduces
the complexity, (2) the finite alphabet constraints are ex-
ploited in a finer granularity than the quantization of LS.

Algorithm 2 (LOIC)

1. Initialize xold from the last iteration in Algorithm 1.
Compute r = r(xold).

2. FOR i = 0, · · · , I ,

r = r + Hxold
i , (18)

xnew
i = arg min

xi∈F
‖r −Hxi‖2, (19)

r = r −Hxnew
i , (20)

3. Step 2 can be repeated until it converges in the sense
the step 2 can not reduce the cost function ‖r(x)‖2.

Note that since the channel is FIR, the contributions of a
small windowed signalxi is limited. Thus (19) can be ef-
fectively reduced to a LS problem with a small dimension.

In Algorithm 2, the windowsWi, i = 1, · · · , I are left
unspecified. Because of the shift-invariant structure, we can
restrict our attention to sliding windows. Different choices
of Wi, i = 1, · · · , I will lead to different implementation
complexity. In the simulations of this paper, for frequency
flat channels, we chooseMT non-overlapping windowsWi,
each having only a single1. This corresponds to the case
that each user’s signals are optimized with signals from all
other users cancelled. In this case, after the interference
cancellations, (19) is optimized with matched filtering (for
BPSK). This special case for flat channels has been pro-
posed in [4]. Compared with [4], Algorithm 2 allows more
general interference cancellation structures, which are par-
ticularly useful for frequency selective channels. For MIMO-
ISI channels, we chooseT overlapping sliding windows,
one for each time index.W0 is chosen to bediag[IwM 0].
Then (19) becomes:

x̃ = arg min
x̃∈F

‖r̃ − ΓC
(w)[H(z)]x̃‖2, (21)

≈ Q

[(
ΓC

(w)[H(z)]
)†

r̃
]

, (22)

wherer̃ andx̃ are sub-vectors selected accordingly. To re-
duce the complexity of (21), the quantized LS (22) is used
as an suboptimal approximation. Note that (21) is in a sim-
ilar form with (16) but the dimension is greatly reduced.

One might wonder why not simply extending the setup
for flat channels and performper-user per-symbol interfer-
ence cancellation and how the window size affects the per-
formance. This is briefly explained as follows. Since the
search space is a discrete set of grid points, greedy search
can only be assured to converge to local optimum. A larger
local window would have better chance to escape from lo-
cal optimum. However, a larger window requires more local
checks for potential updates, unless a suboptimal approxi-
mation such as (22) is used. The complexity and perfor-
mance tradeoff for a general class of iterative greedy search
algorithms has been investigated in greater details in [1].

4. SIMULATIONS

The simulation model is generated as:

[H̄ Y] = H[I
√

SNR · σ2
H/MXo] + [−∆H N] (23)

whereH is fixed and normalizedtr{HHH} = MN(d +
1)/σ2

H . We setT = 100 andσH = 0.4 in all simulations.
In other words,E(‖∆H‖2

F ) = 16%‖H‖2
F .
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Fig. 1. (a) BER forM = 1, N = 4, d = 0 (b) Average
number of iterations forM = 2, N = 4, d = 3.
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Figure 1(a) and Figure 2 give the BER performance for a
1-in-4-out flat channel and a4-in-8-out flat channel, respec-
tively. In both figures, the performance of LS constructed
with H̄ is much worse than the LS or MMSE with exact
channel knowledge, confirming the need for further pro-
cessing. While the performance of TLS in Figure 1(a) is
close to optimal, its performance in Figure 2 is unsatisfac-
tory. Recall that TLS consists of two steps: dimension re-
duction and ambiguity resolution. In the second step, TLS
relies on the signature ofI to resolve the ambiguity in pos-
sible left-multiplications of the much longer signal matrix
X given the row span of[I X ]. Our explanation is that
this resolution is not robust. Designing more robust reso-
lutions using signaling constraints is not discussed here due
to space constraint and since the main focus is on iterative
local optimization algorithms. For the1-in-4-out channel
(Figure 1(a)), all the detectors except the LS with imprecise
channel knowledge have near optimal performance. We at-
tribute this observation to the rich diversity offered by the
SIMO channel which is effective in recovering the signals.
For the MIMO channel (Figure 2), it can be seen that IP-LS
(Algorithm 1 using LS approximation as step 3) achieves a
performance close to the LS with exact channel knowledge.
The performance of IP-LOIC (Algorithm 1 using Algorithm
2 as step 3) is even close to the optimal ML detector with

perfect channel knowledge.
The BER performance for a2-in-4-out ISI channel with

d = 3 is shown in Figure 3. The window sizew is cho-
sen to be3. It is observed that IP-LS is about1-2dB worse
than the LS with perfect channel knowledge. The proposed
IP-LOIC is about1dB better than MMSE with perfect chan-
nel knowledge. The performance of IP-LOIC with perfect
channel knowledge is much better than MMSE, demonstrat-
ing its advantage in known channel detection problems. The
performance gap between the perfect and imprecise channel
knowledge detection with IP-LOIC suggests the existence
of local minima in (11).

Figure 1(b) illustrates the complexity or the convergence
speed for IP-LS and IP-LOIC. TakeSNR = 7dB for exam-
ple, the loop of IP-LS are executed2.5 times on the average,
and for iterative projection with LOIC, the loop of Algo-
rithm 1 is executed2.2 times on the average, and the inner
loop of Algorithm 2 is executed3.5 times on the average.
Since Algorithm 2 involves inversion of a matrix of size
20 × 6(see (22)) while the LS algorithm for (16) involves
solving the over-determined linear system with dimension
412×200, we can conclude that the proposed LOIC method
has a lower complexity.
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