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ABSTRACT complexity which can utilize the constraints to gradually
improve the match of the signal estimate and the channel es-
timate with the observation. The proposed method operates
as a sequence of local optimizations with the interferences
from out-of-window symbols cancelled.

In this work, we investigate the signal detection for MIMO
systems with imprecise channel knowledge. The optimal
detector is one which best matches the “total” observation
matrix and a “total” signal matrix which has a finite alphabet
constraint and a Sylvester structure constraint. An iterative
local optimization with interference cancellation (LOIC) al- 2. CHANNEL MODEL AND GMLD
gorithm is proposed to achieve low complexity and exploit
the finite alphabet constraint. Simulation results show that 2-1- Channel Model

our proposed algorithms can detect the signals with BER pefinjtion 1 (Sylvester Matrices)

close to the case of perfect channel knowledge, if a rough The Row-Sylvester Matrix of H(z) =Hy+---+Hgz ¢

channel estimate is available initially. with ¢ block rows is defined as:
H, H, --- H; 0 - 0
1. INTRODUCTION o H. Hi --- Hs --- 0
Gt _ 0 1 d
: - . r - [H(2)] S :
In wireless MIMO communications, extensive researches : . . . . . :
have been conducted on the signal estimation and detection o --- 0 Hy H, --- H,

for completely known (perfectly trained) and completely . _
unknown (blind) channel models. However, in practice, nei- e Column-Sylvester Matrix of H(z) with £ block columns

ther model is realistic because wireless channels are slowly'S défined as:

time-varying, as a result of physical channel impairments H

and traffic dynamism. Tc©H(z)] = (FR(@ [HH(Z)]) : 2)
In this paper, we consider the signal detection for MIMO

o ; . i Consider a MIMO-ISI channel with ISI-degree H(z) =
systems withmprecise receiver channel knowledge:

Hy + Hiz7' + --- + Hyz~%. Note that the casé = 0
—H H(z)=H AH(2), (1 particularizes to the frequency flat channel. Rétand N
y(2) (2)z(z) +n(z), H(z) (2) + (=), @ denote the number of transmitting and receiving antennas,

where the channel transfer functibi( 2 ) is assumed to com- respectively. We assume a block fading scenario where the
prise of a known parfi(z) and an unknown parhH(z). channel remains constant for the duration of the coherence
The channel imprecision can be the channel estimation erinterval. LetT" denote the block size (in symbols) which
ror as a result of imperfect training, or alternatively be the iS Iess than the coherence interval length. Additionally, we
gradual change in the channel response. assume a zero-padding of lengihs appended at the end

Assuming each entry cAH(z) andn(z) is i.i.d. Gaus- of a block transmission df' channel uses so that the inter-
sian distributed, the generalized maximum likelihood de- block inter_ference is eliminated. With these assumptions,
tector (GMLD) is the proposed formulation for signal de- We can write the channel model as (1). o
tection. Signal estimation techniques such as LS and TLS  With the definition of the following quantitiesH =
can provide initializations which hopefully should reside in [Ho dH11 -+ Hg], AH = [AHo AH,; -+ AHg|, &' =
a local vicinity of the true signal. In order to further im- TrV[z(2)], Y = Wo ¥y " Ypyq,)» the imprecise
prove the detection accuracy, the structural and finite alpha-channel model considered in this paper is:
bet constraints sh(_)ulc_zl be_ effe(_:tlvel_y exploited. In tr_us pa- Y — HX 4N = (f + AH)X + N 3)
per, we aim at designing iterative signal detectors with low

AHJi, j] ~ i.i.d. N(0,1) (4)

NJi, j] ~ i.i.d. N(0,1), independentoAH (5)
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where[i, j] denotes théi, j)th entry of a matrix.
Normalization: Note that the channel model (3)-(5) has

3. ITERATIVE SIGNAL DETECTION

already been normalized without loss of generality. Sup- 3.1. Initialization with TLSor LS

pose initially the unnormalized channel model is given as:

Y,=1/SNR-03%/M(H, +ocgAH)X, + oxN, (6)

where SN R is the total SNR at all transmit antennas and
each element o, belongs to the normalized finite constel-
lation set, e.g. BPSK. After normalization we would have:

2
(1ﬁo+AH> (N/SNR UH%) +N.
Oy M

Training Form: Consider the following channel model:

1
—Y,=
ON

Y:=H,(on/oul) + onNy, (7)
Y, = H,(\/SNR- 0% /MX,) + oxN.  (8)

Formulation (11) can be rewritten as:

o . S = + 2
X = arg min_ IHY]-HYIX]TIX],, @12
wheret is the Moore-Penrose pseudo inverse. Formulation
(12) bears a pleasing geometric explanation: fihd SF
to maximize the projection of the “total” observation matrix
[H Y] onto the row span of the “total” transmitted signal
matrix [T X].

If the constraints are dropped and > M (d + 1), the
solution is given by TLS, which can be obtained in two
steps: (1) set the row span [@fX’] to the subspace spanned
by the firstM (d + 1) principal components dH Y]. This
step performs dimension reduction. (2) given the row span
of [I X], use the known pait as a signature to resolve the

This can be explained as a communication transaction whereymbiguity inX’. After these, the estimatéy;.s should be
pilot symbols are transmitted to learn the channel before theqantized to a valid initializatio?(}ogs c SF:

data transmission: (1) start with diffuse prior assump-
tion on H,, that is, the inverse of the covariance matrix
of each row ofH, is set to be0, reflecting the lack of
channel knowledga priori, (2) transmit a training block of
on /oIy followed by d padding zeros to learn the chan-
nel, after whichH, [, j]|Y: ~ N(ou/onY¢li, j], 0% ). With

H, = oy/onY; andAH = N;, we can arrive at (6) and

(0) _ . . 2
Xppg = arg aa X = Xrrs|e. (13)
For frequency flat MIMO channels, the conditioh >
M(d + 1) is satisfied if the channel is PR (prefect recover-
able) by linear filtering in the ideal noise-free case.
For MIMO-ISI channels withV < M (d+1), TLS is not

consequenﬂy (3) Hence we are motivated to rewrite (3) asapplicable. An alternative initialization can be obtained by

(9) and call it theraining form of the channel model:

[HY]=H[IX]+[-AHN]. ©)

least squares constructed from the nominal chaFi{el):

x1§=Q [(rcm [I‘ﬂz)])&} : (14)

The discussion above demonstrates how uncertainties

i i7ati ior = [+H
due to imperfect training can be incorporated into (3). More wherec;g[-] Ethg quant}{zatlon operatio,= [zy" - -
generally, a Bayesian statistics framework is proposed in [1] 2% = [yo Y9 Yriaa

as a unifying model for MIMO-ISI channel which can char-
acterize diverse assumptions on the channel knowledge.

2.2. Generalized Maximum Likelihood Detector

For the channel model in training form (9), consider the
generalized maximum likelihood detection (GMLD) with
H and X being the unknown parameters:

[H X]GAJLD = arg HI%%)‘%Fp([H Y”X, H) (10)

— : w _ 2
=arg min |[HY]-HIX][F. (11)

whereS andF denote structurally and finite alphabet con-
strained sets, respectivély It can be shown [1] that for

wide-sense stationary and ergodic inputs, GMLD is a good

approximation of the optimal maximum likelihood detector
which minimizes the block error probability.

1in the sequel, the simplified notatiosand F are used to represent

sets of matrices of different sizes. The specific constraints should be obvi-

ous from the context.

]H Eg—ﬂH

3.2. Iterative Projection

Formulation (11) leads to an iterative optimization proce-
dure which alternates between optimizing oxeaind opti-
mizing overH, given in Algorithm 1. To simply notation,
we introduceH = I'c™’ [H(2)]. It can be shown that such
an procedure is a particularization of the EM (expectation
maximization) algorithm [2] wittH being themissing data.
Since each step cannot increase the cost function (11), Al-
gorithm 1 will converge to a local minimum.

Algorithm 1 (Iterative Projection (1P))
1. Initialize & asXéoL)S or XL(%?.
2. Fix X, andestimate H asH = [H Y][I X]T.
3. FixH, and optimize over X.
X = arg min_ Y — HX||% (15)

_ : _ 2
= arg min_ ly — Hx|| (16)




4. The above procedure may be repeated. 3. Sep 2 can be repeated until it converges in the sense
the step 2 can not reduce the cost function ||r(x)||%.

3.3. Local Optimization with Interference Cancellation ] ) o
Note that since the channel is FIR, the contributions of a

The bottleneck of Algorithm 1 is on (16), which is a quadratic small windowed signak; is limited. Thus (19) can be ef-
minimization with finite-alphabet constraints. Finding the fectively reduced to a LS problem with a small dimension.
exact minimization for (16) is equivalent to maximum like- In Algorithm 2, the windowswW,;,i = 1,--- , I are left
lihood sequence detection for a known channel. With the unspecified. Because of the shift-invariant structure, we can
technique of dynamic programming, it has been shown in restrict our attention to sliding windows. Different choices
[3] that the detection complexity i©(2(4+1) per user  of W, i = 1,---, I will lead to different implementation
per symbol for BPSK. complexity. In the simulations of this paper, for frequency
One way to reduce the complexity is to use quantized flat channels, we choosé T non-overlapping windowsV;,
linear estimators such as LS or MMSE. For quantized lin- each having only a single. This corresponds to the case
ear estimators, the finite alphabet constraint is only utilized that each user’s signals are optimized with signals from all
on a coarse granularity, i.e., as a final quantization step forother users cancelled. In this case, after the interference
the sequence estimate. Another disadvantage for quantizedancellations, (19) is optimized with matched filtering (for
LS is that the complexity is still high. If the quantized LS BPSK). This special case for flat channels has been pro-
solution is used for Algorithm ¢!y needs to be calculated posed in [4]. Compared with [4], Algorithm 2 allows more
in each iteration where( is of sizeN (T + d) x TM. general interference cancellation structures, which are par-
It can be verified thaty —Hx||? is convex ink € RM7, ticularly useful for frequency selective channels. For MIMO-
The convexity assures that the unconstrained global optimal|S| channels, we choosg overlapping sliding windows,

x s can be reached by a series of local search. However, theone for each time indexW,, is chosen to béiag[I,, s 0].
finite alphabet constrained sgtis not a convex set. Never-  Then (19) becomes:

theless, the convexity argument motivates us to design low

complexity (and suboptimal than MLD) algorithms based % = argmin |[f — Tc™[H(2)|x|, (21)
on greedy search to solve (16). xer :
Rewrite (16) as: ~Q [(I‘&“”[H(z)}) i} , (22)
min [ly — H[(L - W) + W,x|? (17)

_ _ _ _ _ _ ‘ wherer andx are sub-vectors selected accordingly. To re-
whereW, is a series of “windowing” matrices, i.e., theh  duce the complexity of (21), the quantized LS (22) is used

element ofx; = W.x is either thej-th element ofx (in as an suboptimal approximation. Note that (21) is in a sim-
window) or0 (out of window). We propose to approximate jjar form with (16) but the dimension is greatly reduced.
(17) Wlth iterative Optimizations over eaCh WindOW. GiVen One m|ght Wonder Why not S|mp|y extending the Setup

each WindOV\NV7;, we restrict the minimization (17) to that for flat channels and perform_uw per_wmbo| interfer-
over the in-window symbols, leaving out-of-window sym-  ence cancellation and how the window size affects the per-
bols fixed or equivalently having their interferences can- formance. This is briefly explained as follows. Since the
celled. Introducer(x) = y — Hx. The details are given  search space is a discrete set of grid points, greedy search
in Algorithm 2, which is named local optimization with in-  can only be assured to converge to local optimum. A larger
terference cancellation (LOIC). local window would have better chance to escape from lo-
The potential advantages of Algorithm 2 are two fold: ¢l optimum. However, a larger window requires more local
(1) it operates on a local window and thus further reduces checks for potential updates, unless a suboptimal approxi-
the Comp|EXity, (2) the finite alphabet constraints are ex- mation such as (22) is used. The Comp|exity and perfor_
ploited in a finer granularity than the quantization of LS. mance tradeoff for a general class of iterative greedy search

Algorithm 2 (LOIC) algorithms has been investigated in greater details in [1].
1. Initialize x°'¥ from the last iteration in Algorithm 1. 4 SIMULATIONS
Computer = r(x°!d).
2 FORi=0,--- .1, The simulation model is generated as:
HY]=H[I/SNR 0% /MX,|+[-AHN] (23
r=r + Hzgld’ (18) [ ] [ GH/ ] [ ] ( )
x;'*" = arg min ||r — Hx 1%, (19)  whereH is fixed and normalizedr {HH”} = M N(d +
- e 1)/o%. We setl’ = 100 andoy = 0.4 in all simulations.
r=r—Hx, (200 Inother wordsE(||AH|2.) = 16%|H||2..



Fig. 1. (a) BER forM = 1,N = 4,d = 0 (b) Average
number of iterations foll = 2, N = 4,d = 3.

BER Performance Comparison for M=4, N=8, d=0, T=100,0, =4, BPSK
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Fig. 2. BER performance comparisons for flat 4180.

Figure 1(a) and Figure 2 give the BER performance for a
1-in-4-out flat channel and &in-8-out flat channel, respec-
tively. In both figures, the performance of LS constructed
with H is much worse than the LS or MMSE with exact
channel knowledge, confirming the need for further pro-
cessing. While the performance of TLS in Figure 1(a) is
close to optimal, its performance in Figure 2 is unsatisfac-
tory. Recall that TLS consists of two steps: dimension re-
duction and ambiguity resolution. In the second step, TLS
relies on the signature afto resolve the ambiguity in pos-
sible left-multiplications of the much longer signal matrix
X given the row span ofl X]. Our explanation is that
this resolution is not robust. Designing more robust reso-

lutions using signaling constraints is not discussed here due

to space constraint and since the main focus is on iterative
local optimization algorithms. For th&in-4-out channel
(Figure 1(a)), all the detectors except the LS with imprecise
channel knowledge have near optimal performance. We at-
tribute this observation to the rich diversity offered by the
SIMO channel which is effective in recovering the signals.
For the MIMO channel (Figure 2), it can be seen that IP-LS
(Algorithm 1 using LS approximation as step 3) achieves a
performance close to the LS with exact channel knowledge.
The performance of IP-LOIC (Algorithm 1 using Algorithm

2 as step 3) is even close to the optimal ML detector with

perfect channel knowledge.

The BER performance for 2in-4-out ISI channel with
d = 3 is shown in Figure 3. The window size is cho-
sen to bes. It is observed that IP-LS is abol#2dB worse
than the LS with perfect channel knowledge. The proposed
IP-LOIC is aboutldB better than MMSE with perfect chan-
nel knowledge. The performance of IP-LOIC with perfect
channel knowledge is much better than MMSE, demonstrat-
ing its advantage in known channel detection problems. The
performance gap between the perfect and imprecise channel
knowledge detection with IP-LOIC suggests the existence
of local minima in (11).

Figure 1(b) illustrates the complexity or the convergence
speed for IP-LS and IP-LOIC. TakeN R = 7dB for exam-
ple, the loop of IP-LS are executed times on the average,
and for iterative projection with LOIC, the loop of Algo-
rithm 1 is execute@.2 times on the average, and the inner
loop of Algorithm 2 is executed.5 times on the average.
Since Algorithm 2 involves inversion of a matrix of size
20 x 6(see (22)) while the LS algorithm for (16) involves
solving the over-determined linear system with dimension
412 x 200, we can conclude that the proposed LOIC method
has a lower complexity.

BER Performance Comparison for M=2, N=4, d=3, T=100,0,,=0.4, w=3, BPSK

BER
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Fig. 3. BER performance comparisons for 2140+ 3.
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