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ABSTRACT

Maximum-likelihood (ML) detection problem for chan-
nels with memory is investigated. The Viterbi algorithm
provides an elegant solution, but is computationally ineffi-
cient when employed for detection on long channels. On
the other hand, sphere decoding solves the ML detection
problem in polynomial expected time over a wide range of
SNRs. In this paper, the sphere-constrained search strat-
egy of sphere decoding is combined with the dynamic pro-
gramming principles of the Viterbi algorithm. The resulting
algorithm has the worst-case complexity of the Viterbi al-
gorithm, but significantly lower expected complexity.

1. INTRODUCTION

We consider the frequency-selective channel model, with
input/output relation given by

l
xr; = E hjsi,j + v;,
Jj=1

where h;,i = 1,...,1 are the coefficients of the channel
impulse response, I denotes the channel length, s; isthe it*
symbol in the transmitted sequence, and v; denotes a Gaus-
sian noise sample NV (0, 02). The maximum-likelihood se-
quence detector solves the optimization problem

k l
min Z |2 — Z hjsm—j+1|®s (1)
m=1 j=1

to find the most likely transmitted symbol sequence. The
Viterbi algorithm ([1], [2]) solves problem (1) using dy-
namic programming ideas [3]. However, the computational
complexity of the Viterbi algorithm is exponentia in the
length of the channel. On the other hand, the sphere de-
coding algorithm [4] can also be used for ML detection on
channels with memory [5], [6] — assuming a finite length
for the transmitted symbol sequence. With a probabilistic
choice of the search radius [ 7], the computational complex-
ity of the sphere decoding algorithm is a random variable,
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with the mean often significantly below the complexity of
the Viterbi algorithm. Therefore, there is merit in studying
the possihility of combining the benefits of both algorithms.
To establish the connection between the two detection tech-
niques, it will be beneficial to first review the basic ideas of
the Viterbi and the sphere decoding algorithms.

2. ML DETECTION WITH VITERBI ALGORITHM

The Viterbi algorithm is commonly defined on a trellis, a
directed graph that describes systems with memory. An ex-
ample of thetrellisis shown in Figure 1.
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Fig. 1. Trellis example

The vectors of vertical black dots in the trellis in Fig-
ure 1 denote the state sets S. These vectors are labeled by
k=1,...,T,and arranged into an array of length T". The
size of the state set S;, depends on the channel memory. In
particular, each element of the set S, represent one possible
state of the channel memory. Adjacent state setsin the trel-
lis are connected via branches. The branches are typically
labeled to describe the input/output relation of the system
corresponding to the particular state transition. Thereis a
total of L branches emanating from each state, correspond-
ing to the L possible values of the input. [Note that the
trellisin Figure 1 starts from the all zeros state.] The state
that a branch sinks in to depends upon the source state and
the value of the current input bit. A concatenated sequence
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of trellis branchesis called a path. The length of the pathis
determined by the number of branchesin it. Each path cor-
responds to a distinct sequence of input symbols, indicated
by the labels on the branches that comprise the path.

The Viterbi algorithm uses the trellis representation to
find the solution to (1). In particular, it finds the trellis path
corresponding to the smallest metricin (1) without perform-
ing an exhaustive search over the entire trellis. To this end,
we describe the argument of the ML optimization problem
by

k+1

l
Ck+1 = Z |1’j — Z hm8j,m+1|2. (2)
j=1 m=1

Thevalueof Cy41 dependsonthe current stateand thetrellis
path that led to that particular state. To find the ML optimal
sequence, one needs to determine the trellis path with the
smallest cost. An exhaustive search over al possible paths
would clearly not be feasible even for trellises with moder-
ate number of states. However, Cj.41 can be expressed as

!
Chr1 = Cp + [Tpy1 — Z hjsk—jp1]*. ©)
=1

Clearly, the second term of the RHS of (3) does not depend
onsy_g,.--,So. Therefore, to find the smallest cost path to
the state S; in the set Sp.1, it is sufficient to consider all
possible state transitions to S; (along the L branches ema-
nating fromthe statesin set Sy,). Thisprocedure can be done
recursively. Finally, the trellis path of length 7' that has the
smallest cost Cr is the optimal path. The signal sequence
that correspondsto the branch transitions along the optimal
trellis path is the solution to the ML detection problem.

The complexity of the Viterbi algorithm is proportional
to the number of states and thus grows exponentially with
the length of the channel. On the other hand, it is linear in
the length of the data sequence.

3. ML DETECTION WITH SPHERE DECODING

Another technique that provides the solution to the ML de-
tection problem without actually performing an exhaustive
search is sphere decoding. To employ sphere decoding, we
need to write the channel model as

xr=Hs+v, (4)
where s = [s; s ... st] isthe vector of transmitted data

sequence, and v = [v; vy ... vry_1] isthe vector of ad-
ditive white Gaussian noise. Matrix H € R+ -UxT jg

given by
o i
ha hy
hy ... hy
H = , hi € R.
hy ... hy
hi hi—a
h

ML detection can how be expressed as
min ||z — Hs||?. (5)
S

This problem has a geometric interpretation: given a point
x, find the closest lattice point in a skewed lattice Hs. The
sphere decoding algorithm solves (5) by performing asearch
over only those points H s that belong to a sphere around z.
The radius r of the sphereis chosen so that we find a point
inside the sphere with a high probability. In particular,

llo = Hs||” = [lvl]* = v} + -+ + 07,

is a chi-square random variable with T' degrees of freedom.
Thustheradiusr? = aT'o? can be chosen so that

aT /\Tfl N
/0 ﬁe d\ = py, (6)

where p, = 0.99, say.
The condition that point Hs belongs to the sphere of
radiusr is given by

r2 > ||z — Hs||2. @)
The RHS of (7) can be expanded as
r? > (z1—his1)?
+ (22— his2 — has1)® + ... (8)

where the first term depends only on s, the second term
on {s1, s2} and so on. Therefore, considering the first term
only, a necessary condition for H s to lie inside the hyper-
sphereis

r? > (21 — hys1)> )

This conditionis equivalent to s; belonging to the interval

—r+x r+x
< < .
{ hy -‘ == { hy J 10

Furthermore, for every s satisfying (10), s> needsto satisfy

r? > (371 - hlsl)z + (372 — hisy — h231)2 (11)




Defining

rs =r?

- (.1‘1 - h181)2 5 (12)

and zy; = w2 — hzs;, astronger necessary condition can
befound by looking at thefirst two termsin (8), which leads
to sy belonging to the interval

—T2 + Ta)1 T2 + Ty
— | << | —.
[ ha w = { h J 13

One can continuein asimilar fashion for s 3, and so on until
st. Notethat these T" conditionsused to find s are necessary
but still not sufficient. Only if an additional constraint,

(xr41 — hST—i902 —+ — h2ST)2 .

+ (Trp-1 — lst)?,

2
re1 2

issatisfied, the point s indeed doesbelong to the sphere, i.e.,
it satisfies condition (7).

The sphere decoding al gorithm performs a search on the
tree, asillustrated in Figure 2. The nodes on the k" level
of the tree correspond to the vectors [s; ...s,]. Sincethe

Fig. 2. Tree search of the sphere decoding algorithm.

vector z in (4) is not arbitrary, but is a point Hs perturbed
by additive noise with known statistical properties, we can
talk about the average complexity of the sphere decoding al -
gorithm. The expected complexity of the algorithm is pro-
portional to the expected number of points in the tree that
the algorithm visits [5]. For moderate data-block lengths, it
is polynomial over awide range of SNRs.

4. COMBINED SPHERE DECODING AND
VITERBI ALGORITHM

The Viterbi algorithm efficiently solves ML detection prob-
lem on trellises with a moderate number of states. How-
ever, for long channels and/or modulations with high car-
dinality constellations, the Viterbi algorithm is often ineffi-
cient and occasionally non-feasible. On the other hand, the
sphere decoding algorithm has expected complexity often
significantly below the complexity of the Viterbi algorithm.
However, the worst-case complexity of the sphere decoding
algorithm is exponential and corresponds to the exhaustive

search. Therefore, ahybrid receiver structure that combines
the sphere decoding constrained search strategy with the
trellis based decoding of the Viterbi algorithm, is desired.
This can be obtained by either modifying the sphere de-
coding algorithm to impose the channel memory state con-
straints or imposing a sphere-constrained search onto the
Viterbi algorithm. We briefly discuss both.

Consider the sphere decoding algorithm and the search
illustrated in Figure 2. The sphere decoding algorithm does
not account for the special structure (banded Toeplitz) of the
lattice generating matrix in (4). We propose the following
modification: Assume that the algorithm is currently exam-
ining a point on the k" level of the tree. Based on the cur-
rent, anduptol—2 pointsonlevelsk—1,k—2,..., identify
the corresponding state S;, j = 1,2,..., L™ (where the
state is defined as on the trellis). Furthermore, from (12),
it is easy to see (by writing out the recursion) that the cost
associated with this state is given by

Cr(Sj) =17 —riyy-

Now, in addition to the standard steps that the sphere de-
coding algorithm undertakes, it also compares this C,(S;)
with the previously stored C,(S;) and, if the current oneis
greater, prunes the tree (i.e., discard the current tree node).
If the current C(S;) is smaller than the previously stored
Ci(S;) (or there are no previously stored Cy,(.S;)), it stores
the current value of C(S;) and proceeds with the other
sphere decoding steps.

Alternatively, we modify the Viterbi algorithm by im-
posing the sphere-constrained trellis search. Consider the
trellis representation of a frequency-selective channel and a
finite data block transmition. We impose the constraint (7)
that the transmitted signal belongs to a sphere of radius r
implicitly defined by (6). Aswe have shownin the previous
section, an obvious necessary condition that the transmitted
signal needs to satisfy is given by (9). However, from (2),
this condition is equivalent to the constraint 2 > C;. Sim-
ilarly, comparing (11) and (2), we obtain that r2 > C5. In
general,

r?>Cr k=1,2,...,T. (14)

On thetrellis, condition (14) means that the cost C, should,
for each state and time index &, be smaller than the radius
of the sphere. The states that violate condition (14) can
be neglected, i.e., no branches emanating from such states
need to be considered when searching for the optimal trel-
lis path. Therefore, the search on trellis can, on average, be
performed faster that the Viterbi algorithm. The worst case
complexity, on the other hand, coincides with the complex-
ity of the Viterbi algorithm.

The sphere-constrainedtrellissearchisillustratedin Fig-
ure 3, where the“empty” states denote those from which no
branch on optimal path can emanate.
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Fig. 3. Sphere-constrained search on trellis
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Fig. 4. Distribution of complexity exponent, I = 8, T' = 20,
L =2,SNR =10dB.

5. SSMULATION RESULTS AND SUMMARY

We consider a channel of length [ = 8, transmitting BPSK
modulated (L = 2) data in blocks of length T = 20 at
SN R = 10dB and employ the sphere-constrained detection
on the trellis. Figure 4 shows the empirical distribution of
the complexity exponent, defined as

e =logy F,

where F' denotesthe total number of operations (flop count)
performed when detecting s.

As evident from Figure 4, the complexity exponent is
always smaller than the complexity exponent correspond-
ing to the Viterbi algorithm (denoted by the vertical dashed
line). Figure 5 shows the expected complexity exponent asa
function of SNR. The expected complexity is roughly cubic
in the considered SNR range.

In summary, we proposed combinations of the sphere
decoding and the Viterbi algorithms for ML detection for
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Fig. 5. Expected complexity exponent, I = 8, T' = 20,
L=2.

channels with memory. The hybrid algorithm is either the
sphere decoding modified to speed-up the search for the
closest-point in the lattice or the Viterbi algorithm with the
sphere-constrained search on the trellis. Exampleillustrates
improvement in the computational complexity.
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