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ABSTRACT solving sets of linear equations. This is followed by an ex-
ample showing the interpretation of a recursive filter as an

Iterative techniques for solving (large) sets of linear equa- equation solver. Finally, we present an alternative way of
tions is an active research field in applied mathematics. Suchnroducing simple adaptive filters.

techniques constitute an insignificant part, if any part at all,
of the background of electrical and computer engineers. We
argue that some exposure to such techniques is beneficial
in the study of digital signal processing. While important

in their own right, we show that the knowledge of such
techniques facilitates a complementary understanding/inter-
pretation of digital filters as equations solvers. Such connec-
tions between seemingly unrelated fields enhance the learn-
INg Experience. Eerhaps more Important, we also show tha.tl'heGauss—Seidéterative technique for solving sets of lin-
elementary iterative equation solvers can be used as a vehi-

4 i L ear equationsAz = b, with A assumed to have dimen-
cle for an introduction to adaptive filters at an elementary _. . . . .
level. sion M x M, can be explained as follows [1]: The iterative

scheme proceeds cyclically through the elements of the vec-
tor of unknownsy;, for j = 1,2... M, finding one single

1. INTRODUCTION x; at time. In doing this, it imssumedhat all thex;, i # 7,
are known from previous computations. Given this, we can

Iterative techniques for solving (large) sets of linear equa- €XPresse; as

tions is an active research field in applied mathematics. Un-

fortunately iterative solvers for sets of linear equations plays o

no, or at best a very minor, role in the standard electri- 1 b — Z .

cal and computer engineering curriculum. We believe that Y= am[ T L jatils
a short exposure to such techniques, possibly incorporated i=1,(i7)

into a first or intermediate course on digital signal process-
ing (DSP), can be used as a basis for providing a comple-
mentary understanding and/or interpretation of simple time
domain digital filters. We give an example where itis shown

that a simple recursive filter can be interpreted as an iterative
solver of an underlying set of linear equations. Such expo-

sure to connections between seemingly unrelated CONCePLS.  torred to as one iteration. Thus. when computinge-
enhance the learning experience. Subsequently, we Sho‘%ording to Equation 1, the,’s with i <,jare available from

how iterative equation solvers are well suited as a tools fa- previous steps of the current iteration, whereasifswith

cilitating a simple |r_1troduct|on to adaptive filtering. i > j are available from therevious iteration Emphasiz-
We have organized the paper as follows: The next sec-. . : e o (k)
. i . : . . ing this, and identifying the'th iterate ofx; asx; ’, we
tion gives a brief background on iterative algorithms for ; ) ¢
may write a Gauss-Seidel step as

2. BACKGROUND ON ITERATIVE LINEAR
EQUATION SOLVERS

1)

wheregq; ; is element(i, j) of A andb; is element; of b.
Cycling through all the indiceg = 1,2..., M a sufficient
number of times will, if matrixA satisfies certain conditions
[1], produce a sufficiently accurate solutionAa: = b. In
numerical linear algebra one cycle through- 1,2..., M
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Writing this explicitly for all z;'s we have: methods is thérichardson iteratior{2] which is based on

the splittingA =

21— (;I—A). Inits simplest form the

Richardson iteration is often stated as [3]:
O . Zal D) 3]
al 1
y 2™ = (1= pA)z* Y + pb. (8)
* _ Lo (k) _ . (k=1)
2 o as, 2 [b2 = a2, ;amxz ] A substantial amount of literature on iterative linear equa-

tion solvers, as is evidenced for example by the extensive

list of references in [3], is available. Here we just quote an
important result (page 104 of [1]): Assume that the set of

oM = - Z aj i — > aj iz linear equations giving rise to an iteration of the type given
@j.j i=j+1 by Equation 7 has a unique solution. If the iteration con-

verges, it converges to the solution Aft = b. Such con-
vergence is guaranteed if all the eigenvalueS'adire less

M—-1

x(k) _ E a
M = M, zx
apm, ]\/[

than unity.

3) 3. EXAMPLE 1: DIGITAL FILTERS AS ITERATIVE

Collecting all thek'th iterates on the left hand side and the

EQUATION SOLVERS

k — 1'th iterates on the right hand side in appropriately de- | this section we point out that a simple recursive digital

fined vectors, defining filter exemplified by
a;i ags 0 .- 0 y(n) = —ar1y(n — 1) — agy(n — 2) + x(n), 9)

L= : . (4 with a periodic input z(n) can be interpreted as Gauss-
Seidel solver for an underlying circulant linear equation sys-

0 tem. The example can easily be generalized.
M1 GM2 oMM In matrix/vector terms, Equation 9, for,n — 1, and
and n — 2, can be written as
0 a2 - ai,m y(n)
0 0 agz -+ asm 1 a1 as 0 0 zgz - ;g z(n)
_ . . . 0 1 a 0 0 =| z(n—-1) |.
U - : : . 9 (5) 0 0 1 as 0 y(n - Z) z(n — 2)
0 - 0 - ay_im y(n —4)
: y(n —5)

a little reflection reveals that Equation 3 can be stated as

Definingy(n—k)

= [y(n—k),y(n—k—1),y(n—k-2)|",

whereT" denotes vector transpose, anh — k) similarly,

Lz®) = Uz 4p. (6)  we can write
We note thatU is strictly upper triangular, and tht can 1 a1 as 0 0 O
be written as. = D + L with D diagonal and_ strictly 0 1 a |yln)=—=1]az 0 0 |y(n—3)4z(n).
lower triangular. In other words, we see thaglitting of 0 0 1 a; ay 0|
A given byA = D + L — U defines the matrices involved
in the iteration of Equation 6. Definin§ = (D + f,)_lU The immediate interpretation of this equation is as a block

andc = (D + E)_IQ we can write the iterative scheme of
Equation 6 as

implementation of the filter of Equation 9. Assumingn)
is periodic with period and viewingy(n) as a vector that is
computed from a previous value of the same vegtor, —

2™ =Tet Y +e (7) 3), it would make sense to substitute the used notation with
This equation describes the classstdtionaryiterative lin- y(k andy(k 1, respectively. Using this we have
ear equation solvers of which the Gauss-Seidel method is
one example. Other selectionsBfandc based on different 1 a1 a9 0O 0 0
splittings of A, give rise to other stationary iterative equa- 0 1 y(k) =—la 0 0 y(kfl) tz
tion solvers. The simplest, and one of the older of these o o0 1 | a; as 0 |
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Comparing this with Equation 6, and realizing that the ma-
trices

1 a1 a2 0 0 0
0 1 a; |and| azc 0 O (10)
0 O 1 al an 0
constitute a splitting of the circulant matrix
1 ar ag
A - az ]- ai 9 (ll)
a; a2 1

it should be evident that the recursive filter of Equation 9,
when inputz(n) has the appropriate periodicity, can be in-
terpreted as a stationary iterative procedure for solving=

the application of a steepest descent strategy to the objec-
tive function, E{(d(n) — h* (n)z(n))?}, and then using
instantaneous estimates R (i.e. z(n)z” (n)) andr (i.e.
z(n)d(n)). Subsequently, in standard LMS presentations
one goes back to the steepest descent algorithm formulated
in terms ofR andr to derive allowable ranges for the algo-
rithm’s step size parameter and its convergence behavior.
Suppose now that we knew the Richardson iteration, i.e.
Equation 8, and formulated it for the Wiener-Hopf equa-
tion. Furthermore, suppose we wanted to devise an iterative
solution for that equation using the instantaneous estimates
z(n)z” (n) andz(n)d(n) for R andr, respectively. Doing
this immediately results ih™*) = h' 4 j2:(n){d(n) —
2T (n)h°'Y} which is seen to be identical to the standard

x. Furthermore, comparing the structure of the present split- \s aigorithm. The standard results on step size range
ting of A with the splitting associated with the Gauss-Seidel ang convergence behavior can now be established as direct
technique, we realize, — perhaps after a little reflection, that consequences of the properties of the Richardson iterative

the recursive filter of Equation 9 corresponds to a Gauss-

Seidel iteration applied tdy = = where the equations are

cycled through starting from the last equation and proceed-
ing upwards towards the first equation, before the iteration

again continues with the last equation.

Can this observation be useful for some practical pur-
pose? Maybe not, but it is still an interesting connection
that can be utilized as a teaching tool in reinforcing a con-
cept by looking at the same thing from two quite different
points of view.

4. EXAMPLE 2: ITERATIVE EQUATIONS
SOLVERS AS ADAPTIVE FILTERS

Here we point out that the classical LMS algorithm for adap-
tive filtering can be derived directly from the Richardson

iteration. We also present a connection with the more re-

cently introduced-ast Euclidian Direction SearcfFEDS)
adaptive algorithm [4, 5, 6].

scheme in its simplest form. Such results predate the publi-
cation of the LMS algorithm by decades.

The key message here is: If exposure to the elemen-
tary theory of classical stationary iterative techniques can
be taken for granted, the presentation of the LMS algorithm
can be substantially simplified in that it can be established
directly as a consequence of the usenstantaneous esti-
matesand theRichardson iterative schenfer the Wiener-
Hopf equation. Such a presentation of the LMS algorithm
would also give students a better perspective in relating it
to another important branch of science. As an anecdotal re-
mark, we mention that whereas the LMS algorithm was in
its infancy in the beginning 1960’s, the Richardson iterative
scheme of 1910, was rapidly losing favor in the numerical
linear algebra community as a consequence of a 1962 state-
ment attributed to Varga in a recent survey paper on iterative
linear equation solvers [3]: Richardson’s method has the
disadvantage of being numerically unstahleéis such one
might say there is some truth in the snide remarks, mostly

The purpose of any adaptive filter is to estimate some put forward with friendly intent, portraying DSP profession-

desired signali(n) by applying, to a related signain), a
time varying filter whose coefficients at timecan be repre-
sented by a vectdi(n) = [ho(n), hi(n),...,hyr—1(n)]T.
One of the quality metrics of an adaptive filter algorithm
is the speed with whiclk(n) approaches the solution of
the Wiener-Hopf equation in a stationary situation. The
Wiener-Hopf equation iRh = r, whereR is the auto-
correlation matrix of the input sign®& = E{z(n)z” (n)}.
E{} is the expectation operator, anfn) = [z(n),z(n —
1),...,2(n — M + 1)]7 is the vector of random variables
corresponding to signal(n) at various time instantsr is
the crosscorrelation vector defined by= E{z(n)d(n)}.
The key in traditional derivations of the LMS algorithm is

1As is common, we do not use any notation to distinguish the cases

als as scavengers of the mathematicians’ garbage can.

As a more modern example of the utility of iterative
equation solvers for linear systems of equations, we men-
tion the recently introducelgast Euclidian Direction Search
(FEDS) algorithm of Bose et. al. [4, 5, 6] which was origi-
nally developed within a classical adaptive filter theory frame-
work. We now argue that, had the LMS algorithm been de-
rived through the use of Richardson’s iteration, the above
mentioned FEDS algorithm almost suggests itself: Having
an algorithm based on the Richardson iteration applied to
the Wiener-Hopf equation using instantaneous estimates of
the correlations quantities involved, the logical followup ques-
tions to ask would bel) What about applying a more so-
phisticated stationary iterative equation solver than the Ric-

whenz(n) is to be interpreted as a random vector and when it is to be Nardson scheme@nd2) What about using better estimates

interpreted as a vector of signal samples.

of R andr than what was done for LMS3elf suggesting
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answers would be: Use the Gauss-Seidel iterative scheme
and us&X ™' (n)X(n) andX* (n)d(n), whereX(n) andd(n)
are given as

[3]

z(n) xn-1) -+ zn—-M+1)
z(n—1) z(n—-2) -- x(n — M)
X(n) - : e . ’
x(0) z(=1) - z(-M+1) [4]

andd(n) = [d(n),d(n — 1),...,d(0)]T. In a practical
adaptive scheme, we would emphasize the recent past at
the expense of the more distant past by including only the
L most recent rows/elements &f(n) andd(n) or by ex-  [5]
ponentially weighting the rows/elements of the mentioned
matrix/vector. Applying one Gauss-Seidel step according
to Equation 2 to

[6]
X (n)X(n)h = X" (n)d(n) (12)

at timen, i.e. updating only one element bfat timen and
going through the elements &f one for each time instant

in a cyclical fashion, the FEDS algorithm is immediately es- [7]
tablished. This observation was also made by Bose, see his
forthcoming book [7]. Usindlock exponentially weighted
versions of theéX(n) matrix andd(n) vectof an algorithm

with multiplicative complexity given by M, — M being the
number of filter coefficients, and convergence properties far
superior to the LMS algorithm results. In some situations
this algorithm is also claimed to be competitive with Re-
cursive Least Squares (RLS) algorithms. Again, presented
as an application of the theory of stationary iterative linear
equation solvers, this algorithm can be presented in a very
elementary fashion.

5. SUMMARY AND CONCLUSIONS

In this paper we have presented two "non-standard” connec-
tions between important digital signal processing concepts
and iterative techniques for solving sets of linear equations.
This sheds new light to previously established results that
we believe can be used effectively in the teaching of digital

signal processing.
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