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ABSTRACT

Iterative techniques for solving (large) sets of linear equa-
tions is an active research field in applied mathematics. Such
techniques constitute an insignificant part, if any part at all,
of the background of electrical and computer engineers. We
argue that some exposure to such techniques is beneficial
in the study of digital signal processing. While important
in their own right, we show that the knowledge of such
techniques facilitates a complementary understanding/inter-
pretation of digital filters as equations solvers. Such connec-
tions between seemingly unrelated fields enhance the learn-
ing experience. Perhaps more important, we also show that
elementary iterative equation solvers can be used as a vehi-
cle for an introduction to adaptive filters at an elementary
level.

1. INTRODUCTION

Iterative techniques for solving (large) sets of linear equa-
tions is an active research field in applied mathematics. Un-
fortunately iterative solvers for sets of linear equations plays
no, or at best a very minor, role in the standard electri-
cal and computer engineering curriculum. We believe that
a short exposure to such techniques, possibly incorporated
into a first or intermediate course on digital signal process-
ing (DSP), can be used as a basis for providing a comple-
mentary understanding and/or interpretation of simple time
domain digital filters. We give an example where it is shown
that a simple recursive filter can be interpreted as an iterative
solver of an underlying set of linear equations. Such expo-
sure to connections between seemingly unrelated concepts
enhance the learning experience. Subsequently, we show
how iterative equation solvers are well suited as a tools fa-
cilitating a simple introduction to adaptive filtering.

We have organized the paper as follows: The next sec-
tion gives a brief background on iterative algorithms for
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solving sets of linear equations. This is followed by an ex-
ample showing the interpretation of a recursive filter as an
equation solver. Finally, we present an alternative way of
introducing simple adaptive filters.

2. BACKGROUND ON ITERATIVE LINEAR
EQUATION SOLVERS

TheGauss-Seideliterative technique for solving sets of lin-
ear equations,Ax = b, with A assumed to have dimen-
sionM ×M , can be explained as follows [1]: The iterative
scheme proceeds cyclically through the elements of the vec-
tor of unknowns,xj , for j = 1, 2 . . . M , finding one single
xj at time. In doing this, it isassumedthat all thexi, i 6= j,
are known from previous computations. Given this, we can
expressxj as

xj =
1

aj,j
[bj −

M∑

i=1,(i 6=j)

aj,ixi], (1)

whereai,j is element(i, j) of A andbi is elementi of b.
Cycling through all the indicesj = 1, 2 . . . ,M a sufficient
number of times will, if matrixA satisfies certain conditions
[1], produce a sufficiently accurate solution toAx = b. In
numerical linear algebra one cycle throughj = 1, 2 . . . , M
is referred to as one iteration. Thus, when computingxj ac-
cording to Equation 1, thexi’s with i < j are available from
previous steps of the current iteration, whereas thexi’s with
i > j are available from theprevious iteration. Emphasiz-
ing this, and identifying thek’th iterate ofxi asx

(k)
i , we

may write a Gauss-Seidel step as

x
(k)
j =

1
aj,j

[bj −
j−1∑

i=1

aj,ix
(k)
i −

M∑

i=j+1

aj,ix
(k−1)
i ]. (2)
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Writing this explicitly for allxj ’s we have:

x
(k)
1 =

1
a1,1

[b1 −
M∑

i=2

a1,ix
(k−1)
i ]

x
(k)
2 =

1
a2,2

[b2 − a2,1x
(k)
1 −

M∑

i=3

a2,ix
(k−1)
i ]

...

x
(k)
j =

1
aj,j

[bj −
j−1∑

i=1

aj,ix
(k)
i −

M∑

i=j+1

aj,ix
(k−1)
i ]

...

x
(k)
M =

1
aM,M

[bM −
M−1∑

i=1

aM,ix
(k)
i ].

(3)

Collecting all thek’th iterates on the left hand side and the
k − 1’th iterates on the right hand side in appropriately de-
fined vectors, defining

L =




a1,1 0 · · · 0
a2,1 a2,2 0 · · · 0

...
. ..

. ..
... · · · . .. 0

aM,1 aM,2 · · · aM,M




, (4)

and

U = −




0 a1,2 · · · a1,M

0 0 a2,3 · · · a2,M

...
...

.. .
0 · · · 0 · · · aM−1,M

0 0 · · · 0




, (5)

a little reflection reveals that Equation 3 can be stated as

Lx(k) = Ux(k−1) + b. (6)

We note thatU is strictly upper triangular, and thatL can
be written asL = D + L̃ with D diagonal and̃L strictly
lower triangular. In other words, we see that asplitting of
A given byA = D + L̃−U defines the matrices involved

in the iteration of Equation 6. DefiningT = (D + L̃)
−1

U
andc = (D + L̃)

−1
b we can write the iterative scheme of

Equation 6 as
x(k) = Tx(k−1) + c. (7)

This equation describes the class ofstationaryiterative lin-
ear equation solvers of which the Gauss-Seidel method is
one example. Other selections ofT andc based on different
splittings ofA, give rise to other stationary iterative equa-
tion solvers. The simplest, and one of the older of these

methods is theRichardson iteration[2] which is based on
the splittingA = 1

µI − ( 1
µI −A). In its simplest form the

Richardson iteration is often stated as [3]:

x(k) = (I− µA)x(k−1) + µb. (8)

A substantial amount of literature on iterative linear equa-
tion solvers, as is evidenced for example by the extensive
list of references in [3], is available. Here we just quote an
important result (page 104 of [1]): Assume that the set of
linear equations giving rise to an iteration of the type given
by Equation 7 has a unique solution. If the iteration con-
verges, it converges to the solution ofAx = b. Such con-
vergence is guaranteed if all the eigenvalues ofT are less
than unity.

3. EXAMPLE 1: DIGITAL FILTERS AS ITERATIVE
EQUATION SOLVERS

In this section we point out that a simple recursive digital
filter exemplified by

y(n) = −a1y(n− 1)− a2y(n− 2) + x(n), (9)

with a periodic input x(n) can be interpreted as Gauss-
Seidel solver for an underlying circulant linear equation sys-
tem. The example can easily be generalized.

In matrix/vector terms, Equation 9, forn, n − 1, and
n− 2, can be written as

[
1 a1 a2 0 0 0
0 1 a1 a2 0 0
0 0 1 a1 a2 0

]



y(n)
y(n− 1)
y(n− 2)
y(n− 3)
y(n− 4)
y(n− 5)


 =

[
x(n)

x(n− 1)
x(n− 2)

]
.

Definingy(n−k) = [y(n−k), y(n−k−1), y(n−k−2)]T ,
whereT denotes vector transpose, andx(n − k) similarly,
we can write



1 a1 a2

0 1 a1

0 0 1


 y(n) = −




0 0 0
a2 0 0
a1 a2 0


 y(n−3)+x(n).

The immediate interpretation of this equation is as a block
implementation of the filter of Equation 9. Assumingx(n)
is periodic with period3 and viewingy(n) as a vector that is
computed from a previous value of the same vector,y(n −
3), it would make sense to substitute the used notation with
y(k) andy(k−1), respectively. Using this we have




1 a1 a2

0 1 a1

0 0 1


 y(k) = −




0 0 0
a2 0 0
a1 a2 0


 y(k−1) + x.
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Comparing this with Equation 6, and realizing that the ma-
trices 


1 a1 a2

0 1 a1

0 0 1


 and




0 0 0
a2 0 0
a1 a2 0


 (10)

constitute a splitting of the circulant matrix

A =




1 a1 a2

a2 1 a1

a1 a2 1


 , (11)

it should be evident that the recursive filter of Equation 9,
when inputx(n) has the appropriate periodicity, can be in-
terpreted as a stationary iterative procedure for solvingAy =
x. Furthermore, comparing the structure of the present split-
ting ofA with the splitting associated with the Gauss-Seidel
technique, we realize, – perhaps after a little reflection, that
the recursive filter of Equation 9 corresponds to a Gauss-
Seidel iteration applied toAy = x where the equations are
cycled through starting from the last equation and proceed-
ing upwards towards the first equation, before the iteration
again continues with the last equation.

Can this observation be useful for some practical pur-
pose? Maybe not, but it is still an interesting connection
that can be utilized as a teaching tool in reinforcing a con-
cept by looking at the same thing from two quite different
points of view.

4. EXAMPLE 2: ITERATIVE EQUATIONS
SOLVERS AS ADAPTIVE FILTERS

Here we point out that the classical LMS algorithm for adap-
tive filtering can be derived directly from the Richardson
iteration. We also present a connection with the more re-
cently introducedFast Euclidian Direction Search(FEDS)
adaptive algorithm [4, 5, 6].

The purpose of any adaptive filter is to estimate some
desired signald(n) by applying, to a related signalx(n), a
time varying filter whose coefficients at timen can be repre-
sented by a vectorh(n) = [h0(n), h1(n), . . . , hM−1(n)]T .
One of the quality metrics of an adaptive filter algorithm
is the speed with whichh(n) approaches the solution of
the Wiener-Hopf equation in a stationary situation. The
Wiener-Hopf equation isRh = r, whereR is the auto-
correlation matrix of the input signalR = E{x(n)xT (n)}.
E{} is the expectation operator, andx(n) = [x(n), x(n −
1), . . . , x(n −M + 1)]T is the vector of random variables
corresponding to signalx(n) at various time instants1. r is
the crosscorrelation vector defined byr = E{x(n)d(n)}.
The key in traditional derivations of the LMS algorithm is

1As is common, we do not use any notation to distinguish the cases
whenx(n) is to be interpreted as a random vector and when it is to be
interpreted as a vector of signal samples.

the application of a steepest descent strategy to the objec-
tive function, E{(d(n) − hT (n)x(n))2}, and then using
instantaneous estimatesof R (i.e. x(n)xT (n)) andr (i.e.
x(n)d(n)). Subsequently, in standard LMS presentations
one goes back to the steepest descent algorithm formulated
in terms ofR andr to derive allowable ranges for the algo-
rithm’s step size parameter and its convergence behavior.

Suppose now that we knew the Richardson iteration, i.e.
Equation 8, and formulated it for the Wiener-Hopf equa-
tion. Furthermore, suppose we wanted to devise an iterative
solution for that equation using the instantaneous estimates
x(n)xT (n) andx(n)d(n) for R andr, respectively. Doing
this immediately results inh(new) = h(old)+µx(n){d(n)−
xT (n)h(old)} which is seen to be identical to the standard
LMS algorithm. The standard results on step size range
and convergence behavior can now be established as direct
consequences of the properties of the Richardson iterative
scheme in its simplest form. Such results predate the publi-
cation of the LMS algorithm by decades.

The key message here is: If exposure to the elemen-
tary theory of classical stationary iterative techniques can
be taken for granted, the presentation of the LMS algorithm
can be substantially simplified in that it can be established
directly as a consequence of the use ofinstantaneous esti-
matesand theRichardson iterative schemefor the Wiener-
Hopf equation. Such a presentation of the LMS algorithm
would also give students a better perspective in relating it
to another important branch of science. As an anecdotal re-
mark, we mention that whereas the LMS algorithm was in
its infancy in the beginning 1960’s, the Richardson iterative
scheme of 1910, was rapidly losing favor in the numerical
linear algebra community as a consequence of a 1962 state-
ment attributed to Varga in a recent survey paper on iterative
linear equation solvers [3]:” Richardson’s method has the
disadvantage of being numerically unstable”. As such one
might say there is some truth in the snide remarks, mostly
put forward with friendly intent, portraying DSP profession-
als as scavengers of the mathematicians’ garbage can.

As a more modern example of the utility of iterative
equation solvers for linear systems of equations, we men-
tion the recently introducedFast Euclidian Direction Search
(FEDS) algorithm of Bose et. al. [4, 5, 6] which was origi-
nally developed within a classical adaptive filter theory frame-
work. We now argue that, had the LMS algorithm been de-
rived through the use of Richardson’s iteration, the above
mentioned FEDS algorithm almost suggests itself: Having
an algorithm based on the Richardson iteration applied to
the Wiener-Hopf equation using instantaneous estimates of
the correlations quantities involved, the logical followup ques-
tions to ask would be:1) What about applying a more so-
phisticated stationary iterative equation solver than the Ric-
hardson scheme?and2) What about using better estimates
of R and r than what was done for LMS?Self suggesting
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answers would be: Use the Gauss-Seidel iterative scheme
and useXT (n)X(n) andXT (n)d(n), whereX(n) andd(n)
are given as

X(n) =




x(n) x(n− 1) · · · x(n−M + 1)
x(n− 1) x(n− 2) · · · x(n−M)

... · · · ...
x(0) x(−1) · · · x(−M + 1)


 ,

and d(n) = [d(n), d(n − 1), . . . , d(0)]T . In a practical
adaptive scheme, we would emphasize the recent past at
the expense of the more distant past by including only the
L most recent rows/elements ofX(n) andd(n) or by ex-
ponentially weighting the rows/elements of the mentioned
matrix/vector. Applying one Gauss-Seidel step according
to Equation 2 to

XT (n)X(n)h = XT (n)d(n) (12)

at timen, i.e. updating only one element ofh at timen and
going through the elements ofh, one for each time instant
in a cyclical fashion, the FEDS algorithm is immediately es-
tablished. This observation was also made by Bose, see his
forthcoming book [7]. Usingblock exponentially weighted
versions of theX(n) matrix andd(n) vector2 an algorithm
with multiplicative complexity given by4M , –M being the
number of filter coefficients, and convergence properties far
superior to the LMS algorithm results. In some situations
this algorithm is also claimed to be competitive with Re-
cursive Least Squares (RLS) algorithms. Again, presented
as an application of the theory of stationary iterative linear
equation solvers, this algorithm can be presented in a very
elementary fashion.

5. SUMMARY AND CONCLUSIONS

In this paper we have presented two ”non-standard” connec-
tions between important digital signal processing concepts
and iterative techniques for solving sets of linear equations.
This sheds new light to previously established results that
we believe can be used effectively in the teaching of digital
signal processing.
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