SEPARATION OF SEMIREFLECTIVE LAYERSUSING SPARSE |CA

Alexander M. Bronstein, Michael M. Bronstein, Michael Zibulevsky and Yehoshua Y. Zeevi

Department of Electrical Engineering, Technion — Isragl Institute of Technology, Haifa 32000, Israel

ABSTRACT

We address the problem of Blind Source Separation (BSS) of
superimposed images and, in particular, consider the recovery of
a scene recorded through a semirefective medium (e.g. glass
windshield) from its mixture with a virtual reflected image. We
extend the Sparse ICA (SPICA) approach to BSS and apply it to
the separation of the desired image from the superimposed
images, without having any a priory knowledge about its
structure and/or statistics. Advances in the SPICA approach are
discussed. Simulations and experimental results illustrate the
efficiency of the proposed approach, and of its specific
implementation in a simple algorithm of a low computational
cost. The approach and the algorithm are generic in that they can
be adapted and applied to a wide range of BSS problems
involving one-dimensional signals or images.

1. INTRODUCTION

The phenomenon of a virtual image, being semireflected by a
transparent medium, situated along the optical axis somewhere
between the imaged scene and the observing point, and
superimposed on the imaged scene, is typical of many optical
setups. It may arise, for example, when photographing objects
behind a glass window or windshield [9].

Approaches to reconstruction of the virtual and the rea
images, based on polarimetric imaging, have attracted attention
during the last few years [4], [8]. Incorporation of a polarizer
into the optical system is a common photographic technique
allowing suppression of semireflected virtual images [9]. Several
designs of such cameras, e. g. a system equipped with a liquid
crystal polarizer [6], were recently proposed.

However, in most cases, the polarizer is not capable of
removing the reflected component completely [5], [9]; even
when the polarizer is oriented to minimize the reflected
component, the virtual imageis still visible.

Several signa post-processing approaches were proposed in
recent studies, however, they rely mainly on motion, stereo and
focus, and assume that the real and the virtual objects lie at
significantly different distances from the camera [3], [10]. Other
methods assume some knowledge about the scene, such as the
semireflector angle and refraction index, which makes them
hardly feasible in the general case [9].

Farid and Adelson [5] proposed to use an analytic version
of independent component analysis (ICA) for blindly separating
the reflected and the transmitted images. Such an approach does
not require any prior knowledge regarding model parameters,
and offers better feasibility in rea-world applications. The
proposed method is not general enough in that it is applicablein
case having only two sources. On the other hand, iterative

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il -733

approaches such as the information maximization (Infomax)
algorithm [2] are relatively slow, athough they can handle any
number of sources, provided a sufficient number of mixtures are
available.

It has been recently demonstrated by Zibulevsky et al [11],
[7] that the assumption of sparseness is very powerful and can
significantly improve the accuracy and the computational
efficiency of existing ICA agorithms. In addition, sparse
decomposition alows using simple “geometric” agorithms to
separation of mixed data. We adopt the Sparse ICA (SPICA)
approach and show that it affords effective separation of a
transmitted image from superimposed reflections [1].

2. THE BLIND SOURCE SEPARATION PROBLEM

In atypical BSS task, N mixtures are observed or received.
Each of these available signals (or images), is assumed to be
generated by a linear mixture of unknown sources, where the
number of sources is usually assumed to be known to the
observer, but this condition can be relaxed. Thus, an N-
dimensional vector of observed signals is generated by the
product of an unknown NxM mixing matrix A and an M-
dimensiona vector of unknown source signals. The task is to
estimate the mixing matrix and then recover the source signals.

A typica embodiment of this problem in the context of
superimposed reflections is depicted in Figure 1. The real object
(a) is situated on the optical axis behind a semireflecting planar
lens (d), inclined with respect to the optical axis [9]. Another
object (b) is partidly reflected by the lens, creating a virtua
image (c). The camera (f) records a superposition of the two
images. Thus, the intensity of the observed mixed image is given
by:

m =a;S +a,S, (1)
where s and s, are the images of two source objects (a) and
(b), and a,, a, are constants, and their specific values depend

on the optical geometry and properties of the reflective medium.
It is assumed here that the problem is spatia invariant. This
reasonably good approximation of the physical conditions can be
relaxed.

Note that in the setup described so far we have a 1x2
mixing matrix. Since the reflected light is polarized, by
introducing a linear polarizer (€), the relative weights of the two
mixed images can be altered, thus yielding mixtures of the form

m,=a,s+8a,s, : n=1..,N )
or in matrix notation:
M=A-S 3)
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where m,...,m, are the N mixed imagesand s and s, are the

source images represented as row vectors and A is the mixing
(crosstalk) matrix.

The mixing matrix is usually unknown, unless side
information regarding the physics of the mixing medium is
available. In the context of the mixed reflections problem, this
would require the availability of an exact optical model of the
imaging system, visual scene and the medium. We, of course, do
not assume any prior knowledge regarding the mixing matrix.
Our godl is to determine the two source images S from the set of
equations (3) with an unknown mixing matrix. This is the
essence of the BSS problem.

Under the assumption that the sources are statisticaly
independent (which is reasonable in the presented case), it is
possible to recover sources s and s, up to a permutation and
multiplicative constant, by estimating the mixing matrix A =A ,
and estimating the sources by its inversion:

S=A"-M 4
This problem is solved using the Sparse ICA method, discussed
in the following section.

Figure 1 — A typical optical setup including a semireflector: (a) — object
1, (b) — object 2, (c) — virtual object, (d) — glass, () — polarizer, (f) —
camera.

3. SPARSE ICA (SPICA)

Zibulevsky et al [11] have noticed that in case of sparse sources,
their linear mixtures can be easily separated using very simple
“geometric” algorithms. Given linear mixtures resulting from
source images with the magjority of pixels having a near-zero
magnitude and under the assumption of statistical independence
of the locations of the non-zero pixels in the sources, there is a
high probability that only a single source will contribute to a
given pixel in each mixture. Consequently, the majority of the
pixels in each mixture will be influenced by one source only and
have a magnitude equal to that of the source multiplied by the
corresponding coefficient of the mixing matrix. In the scatter
plot of one mixture versus the other these pixelswill thereforelie
along a line (each corresponding to a source) at a distance from
the center depending on source magnitude. Hence, it is possible
to reved the ratios of each source's contribution to the mixtures
by measuring the angles of each of the lines[1].

Geometric separation approaches are based on the detection
of co-linearities in the distribution of the coefficients over the
scatter plot. The straightforward way to recover the proper
orientations from the scatter plot is by using the angular
histogram. Applications of this approach are limited to low
dimensions (practically, to 2D) due to the difficulty to construct
the angular histogram in higher dimensions. The M pointsin the

scatter plot (M equals the number of pixels in the image) are
represented as points in N-dimensional space (in our case,
N =2). Since the mixtures are assumed to have a zero mean,
the oriented co-linear distributions are centered at the origin. For
each point ¢ _e R?, theangle

& =tan‘1(ck2/ct) ©)
is computed. Building the histogram of «, it is possible to
detect the directions using a peak-detection algorithm.
An dternative approach is clustering along orientations of
data concentration in the scatter plot. Each point c, is projected

on aunit hemisphere, by normalizing the data vectors:

G = Ck/HCkH (6)
and multiplying them by the sign of the first vector coordinate
G [7]. Asthe result, a number of clusters corresponding to the

number of the sources is formed on the hemisphere. Applying
some clustering agorithm, eg. Fuzzy C-Means (FCM), it is
possible to determine the cluster centers. The coordinates of the
centers define the columns of the estimated mixing matrix,
equivalent to the orientations found in the previous approach.

4. SPARSE DECOMPOSITION OF IMAGES

In Section 3 we showed simple geometric algorithms capable of
separating mixtures of sparse images. It is obvious, however, that
the sources in most applications, including the semireflective
layer separation problem are natural images and have rather non-
sparse nature. However, such images can be sparsely
represented, i.e. there exists alinear transformation T such that
d=Ts (M

is sparse. (Note that there is not necessary to be able to restore
§ from d;, that is T does not necessarily have to be

invertible). Application of the transformation to the mixtures in
(3), dueto thelinearity of T, yields

m :T(au%"'aizsz):aildl"'aizdz (8)
Thus, the problem at hand is equivalent to separation of linearly-
mixed sparse sources. This can be solved using the techniques
described in Section 3.

Different classes of signas have their “natura” sparse
transformations. In natural images (Figure 2a-b), for example, it
is known that the edges usually have a sparse structure, hence
even such a simple operation like a numeric derivative will yield
a sparse image (Figure 2e-f). Figure 3 shows the scatter plot of
two mixtures before (a) and after (b) applying the numeric
derivative.

4.1. Multinode decomposition

Since there is no common sparse representation to different
images, such a simple transformation as the derivative is usualy
data-dependent. Having this problem in mind, richer
representations, that over a wide range of natural images lend
themselves to relatively good sparse representations, such as the
wavelet packet transform (WPT), were proposed [7], [16].

The task is to select only the nodes of the WPT, in which
the decomposition is sparse. Kisilev et a [7] proposed an
algorithm, in which the clustering procedure is first applied to
each one of the nodes, but only nodes with minimal global
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distortion (i.e. the mean-squared distance of data points to the
centers of the closest clusters) are then selected for further
processing. A more genera approach is to assign some quality
factor to each node, which determines its sparseness and then
select a certain percentage of the “best” nodes in the sense of the
assigned quality criterion. The choice of such a criterion will be
discussed later in Section 4.2.

As an dternative to the WP decomposition, we propose to
divide the image into blocks (possibly overlapping), compute
some simple sparse transformation such as the first or the second
order derivative (possibly concatenated) and only then to select
the “best” blocks according to some sparseness criterion. Our
observation is that most natural images have certain regions, in
which edges and texture make such an approach efficient. Figure
4 depicts how the use of blocks can refine the sparseness and
consequently the quality of the scatter plot in the previous
example shown in Figure 2. The mixtures were partitioned into
16 blocks of equal size, and the same sparse transformation was
applied to each block independently.

Figure 2 — (a)—«(b) Non-sparse sources, (c) — (d) Synthetic mixtures, (e)—
(f) The transformed mixtures obtained by the action of derivative in x-
direction.

4.2. Quantitative sparsenesscriteria

Finding an adequate sparseness criterion isacrucial task for
selecting the best nodes or blocks. The generd problem of
guantitative node sparseness estimation is to find such afunction

q(x), which given avector xe R" returns alarge value if it is

sparse or asmall valueif it is not sparse. One of the possibilities
is to use the so-called L, (threshold) norm, i.e. measure the

number of vector coordinates, which are higher than some
threshold 7 :

q-l(x)=%gl<xkzr) ©

where | is the indicator function. A natura choice of the
threshold would be 7 =|x - X|, , where X is the mean value of

X . Another possible sparseness criterion isthe L, norm:
q*(x)=n""[x],/I], : 0<ps1 (10

Recent studies indicate that the L, norm isamore natural choice
for dealing with various aspects of image quality criteria. This,

normalized by the L, norm, asin (10), may turn out to be the

best sparseness criterion. This, however, has yet to be further
investigated.
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Figure 3 — Scatter plot of the mixtures m vs my before (8) and after (b)
the sparse transformation.
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Figure 4 - Sparseness refinement by image partitioning into 16 blocks.
Scatter plots of the coefficients in each block using x derivative as the
sparse transformation (&) and a scatter plot resulting from merging the
coefficients of blocks (1,1), (1,3) and (1,4) (b).

5 .RESULTS

In this section, we apply the SPICA approach to polarization
images obtained by simulation and photographed in real-world
conditions. For comparison, we repeated the results of Farid and
Adelson [5].

In the first experiment, the mixtures were obtained by
artificially mixing two source images (Figure 5a-b). We used two
SPICA methods. WP decomposition and block partitioning with
second-order Sobel numeric derivative applied as sparse
representation. The reconstruction was performed geometricaly,
using an angular histogram. The SNR values represented in
Table 1 and Figure 5 reveal a considerable improvement by
sparse representations, compared to the closed-form ICA [5].

To further test the performance of the SPICA agorithms
and compare them to the Farid-Adelson closed-form ICA, we
used the images of a painting (“Renoir”), framed behind glass,
with a superimposed reflection of a mannequin (“Sheild’),
photographed through a linear polarizer a orthogonal
orientations®.

The block partitioning approach is a natural way to handle
the case of spatially-varying mixing coefficients, which often
occur in reality. The acquired images were divided into four
equally sized super-blocks and the separation problem was
solved in each super-block separately. The coefficients of the

1 Avalable from  http://iwww.cs.dartmouth.edu/~farid/research/
separation.html (courtesy of Hany Farid, Dartmouth College).
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estimated unmixing matrix were then linearly interpolated over
the entire image to produce a more accurate unmixing. Figure 6
shows the reconstruction results. The desired photographed
image of Renoir's painting is recovered with high precision,
without notable artifacts. The non-separated details in the
reconstructed image of the mannequin, resulted from distortions
due to imperfections of the optical system.

The estimated mixing matrix coefficients can be used to
identify which image belongs to the real object and which to the
virtual one (see [1] for details).

Table| — SNR (in dB) of the reconstructed sources A and B

Farid & Adelson  SPICA (WP)  SPICA (blocks)
A 12.18 38.58 35.83
B 26.07 45.96 64.96

Figure 5 — Separation of synthetic mixtures. (a)-(b) Sources, (c)-(d)
mixtures, (e)-(f) Reconstruction by the Farid-Adelson approach, (g)-(h)
Reconstruction by SPICA with block partitioning.

Figure 6 — Separation of synthetic mixtures. (a)-(b) Mixtures, (c)-(d)
Reconstruction by the Farid-Adelson approach, (€)-(f) Reconstruction
by SPICA with WP, (g)-(h) Reconstruction by SPICA with block
partitioning.

6. CONCLUSIONS

The Sparse ICA approach can be effectively used in wide range
of scenarios wherein various mixtures of source images are
available for separation of the sources. In this study we were
primarily concerned with separation of an image from virtua
images superimposed on it by reflections from a semireflecting
medium. The proposed novel sparse decomposition method
incorporates block partitioning, suitable for nonstationary
natural images, as well as for imaging systems such as polarized

semireflecting media, that cannot be considered as spatial
invariant systems, but can to a good approximation be dealt with
as locally spatial invariant systems. Experiments conducted with
simulated and photographed data show the efficiency of this
approach and its advantages over previously-proposed methods.

We have assumed that only two images, acquired at
perpendicular polarization angles, are available. One may extend
the application to acquisition of more than two images by using
principal component analysis (PCA) prior to the application of
ICA.
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