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ABSTRACT

As successor to JPEG, JPEG2000 aims to realize a very low
bitrate. Although JPEG2000’s rate distortion has been im-
proved by approximately 30% against JPEG, as on most
images compressed using overlapping transforms-based al-
gorithms, one can notice visible spurious oscillations, or rin-
ging artifacts, around the edges of a JPEG2000-compressed
image. In this paper, we propose a Partial Differential Equa-
tions, or PDE-based image enhancement technique, in order
to remove these ringing artifacts, while keeping the image’s
edges. Results are provided on grayscale and color images,
showing a visible enhancement, confirmed by the PSNR in-
crease.

1. INTRODUCTION

Unlike lossless image compression, in which every sin-
gle bit of data that was originally in the file remains after
the file is uncompressed, lossy image compression consists
in making a trade-off between file size and image quality,
by introducing loss of information on an image, so that even
lower bitrates can be achieved. As bitrate decreases, degra-
dations caused by information loss become more and more
visible. As an example, JPEG’s most noticeable degrada-
tions are blocking artifacts, caused by short and non over-
lapping transforms. As a successor to JPEG, JPEG2000 uses
overlapping transforms, and achieves lower bitrates without
causing any blocking artifact. Degradations can still be noti-
ced though : the high frequency wavelet coefficients’ heavy
quantization produces spurious oscillations, or ringing arti-
facts, around the edges or discontinuities of the compressed
image.

Instead of increasing bitrate in order to avoid such arti-
facts, we propose a post-processing method, based on Par-
tial Differential Equations (or PDE), to remove them from
the decompressed image, while preserving its edges. Such
operation should result in a better looking, artifacts-free ima-
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ge, as well as in an improvement in terms of PSNR (Peak
Signal to Noise Ratio).

Ringing artifacts removal techniques have already been
proposed in literature. In [1], Yang introduces a method ba-
sed on Maximum Likelihood, but only applies it to gray-
scale images. Our algorithm is able to deal with grayscale
or color images, and shows satisfying results in both cases.
It’s also able to work as a totally unsupervised process.

In the first part, we introduce the principle of PDEs and
isotropic and anisotropic diffusions, before presenting in se-
cond part our diffusion function, that appears to be efficient
for ringing artifacts removal. Finally, we will show in a third
part results on grayscale and color images.

2. PDESAND NONLINEAR FILTERING

We propose in this part a classical approach of noise re-
duction in image processing. This will allow us to quickly
introduce the principles of isotropic and anisotropic diffu-
sions, before talking about the stability of such a process,
and its application to color images. A variational approach,
more aesthetical, but longer, is proposed in [2] ; Deriche’s
approach allows to unify most PDE-based methods in image
enhancing and multi-scale analysis under the same forma-
lism.

2.1. Isotropic diffusion

We consider our problem as a noise reduction problem :
a classical approach consists in considering the image’s noi-
se as a high frequency signal. A well-known solution is li-
near convolution :

I(e,y,t) = / Gla— &y —n.O(E,mdedy (1)
Q

with : (z, y) : a pixel of the image
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I(x,y,t) : the restored image (brightness)
(from now we will write I)

Iy(z,y,t) : the noisy image

G(z,y,t) : a smoothing operator

t : the smoothing strength control parameter

In such type of smoothing process, the Gaussian opera-
tor is commonly used. In [3], Koenderink notices that convol-
ving an image with a Gaussian operator can also be unders-
tood as a diffusion process, that can be written as follows :

o1 _ o1, o1
ot — 0x2 dy? (2)
I(.T,y,O) = IO(:Lvy)

That can be interpreted as the diffusion process of pixel
(z,y)’s brightness around pixels (z + 0z, y £ dy), during a
time ¢ (¢ € [0,T7). This process, called isotropic diffusion,
gives unsatisfying results, since it operates the same way in
all directions, and can’t distinct edges from noise, leading
to a blurry image. However, it allows us to introduce the
notion of anisotropic diffusion.

2.2. Anisotropic diffusion

Anisotropic diffusion, as presented by Perona and Ma-
lik in [4], allows this edges/noise distinction ; the process is
written as follows :

ﬂ _ .
{ 5 = div(c(|VI)VI) 3)
I(IE, Y, O) = IO(Iv y)

with : ¢(.) : a decreasing positive function
div : divergence operator
V : gradient operator

This time, conditional smoothing is performed. Its be-
havior is function of the image’s gradient norm, thanks to
function ¢(.). In low gradient areas (homogeneous areas),
heavy diffusion is performed, while light diffusion is per-
formed in high gradient areas (edges).

2.3. Conditions of stability

Deriche and Faugeras’ approach [2] leads to :

ol . , VI
ot = div(® (WIDW) 4)
p ' (|VI
= QY(|VI|)Iee + (|VI||)I”" (5)

with : ®(.) : a function to be defined
I¢¢ - the second directional derivative of I in the gra-
dient’s direction
I, - the second directional derivative of I in the gra-
dient’s orthogonal direction

As we can see, there’s an analogy between (3) and (4),
with ¢(s) = ‘I’T(S). Writing the parabolic PDE (5) allows us
to define conditions of stability. These are :

o”(0) >0
limyg 7o G7 2 = limyg o @”(|VI]) = 2”(0)
liIn|VI\~>oc ‘1)”(|VID = O7hm\VI|~>oo L ‘(lvvﬂl‘) =0
. ' (|VI
i1 o0 Srifors = 0
VI
(6)

It means that isotropic diffusion is performed in low
gradient areas (|VI| — 0), while diffusion is only applied
along the gradient’s orthogonal direction for high gradient
areas (|VI| — o0).

Many diffusion functions ®(.) can be found in litera-
ture [4, 5, 6]. Interestingly, Deriche and Faugeras’ formula-
tion turns out to prove a great number of these functions do
not have sufficient conditions of stability for high gradient
areas, since the continuous filter then behaves as a reverse
heat equation (backward diffusion is known to be an uns-
table process). In [7], Weickert proves that discretizations
of the Perona-Malik equation are not unstable. Furthermore,
such filter happens to both blur small fluctuations and shar-
pen edges.

2.4. Color images

In the case of color images, we define a vectorial image
I(z,y) : R2 — R3. (3) can be easily extended from I (sca-
lar, grayscale image) to T (vectorial, color image). Howe-
ver, an efficient representation of the color image’s edges
still has to be defined (a multispectral gradient). Many ap-
proaches have been developed for that purpose. We decided
to use Di Zenzo’s norm [8], which is based on differential
geometry of surfaces. It consists in defining a tensor gra-
dient, associated with a vector field, to look for local va-
riations in the image. The highest eigenvalue of the tensor
gradient then corresponds to the gradient norm.

3. RINGING ARTIFACTSREMOVAL

In this part, we propose an anisotropic diffusion func-
tion ¢(.), inspired by Perona-Malik’s, that happens to be
efficient for ringing artifacts removal. We also introduce a
parameters estimation method, based on a Mean Square Er-
ror minimization formulation, in order to make our process
work a totally unsupervised way.

3.1. Anisotropic diffusion function

Unlike Perona-Malik’s equation (3), our diffusion func-
tion ¢(.) isn’t directly linked to |VI|, but to a normalized
version of it, thus allowing us to define a threshold «, which
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values remain the same no matter what image is being pro-
cessed. ¢(.) is defined as :

c(s) = (1+s%).e”® O]

o, Maz (V1) ~Min(|V1]) V1|

with : s = Var(V )

Threshold « allows us to introduce an anisotropy level
for function ¢(.). We can easily notice that for « = 0, ¢(s)
equals 1, discarding s : in this case, the diffusion process
turns into isotropic diffusion, as defined in (2).

3.2. Parametersestimation

Another difference between Perona-Malik’s process and
the one presented here is the fact that instead of using a
constant threshold, we decide to use our function’s back-
ward diffusion property, and make « evolve with time, from
purely isotropic diffusion (heavy denoising) to highly aniso-
tropic diffusion (denoising and edges enhancing). The algo-
rithmic implementation then requires the determination of
two parameters :

— N, the number of iterations (discrete equivalent to 7',
the time of diffusion)

— «, which value evolves according to iteration n. We
rename it o, with n € [0, N — 1]

We are looking for an image quality criteria, in order
to determine optimal parameters «,, and N. Such criteria
should be able to judge the restored image quality, by com-
paring it to the original image. Many quality measures have
been proposed for that purpose. Recent works tend to focus
on psychovisual studies, and try to emulate the Human Vi-
sual System (HVS). Since we’re only looking for an image
quality criteria to determine the process’ parameters, we
decide to use the well-known Mean Square Error (MSE),
which main advantage is its simplicity. From now we write
the parameters’ determination as a minimization problem :

P Q
z_: z:: (I(m,y,n) - I()(.’E,y))2

—~ . =0 y=0
= 8
i = exguin Pa ®

forn € [0, N — 1], with P x @ the size of the image

o, Values start from 0 (first iteration : isotropic diffu-
sion), and increase as the number of iterations grow, so to
minimize the MSE at each iteration. IV is then supposed to
be the number of iterations above which the MSE tends to
be steady (experiments have shown N barely exceeds 20).

It should be noticed that we can’t really talk about conver-
gence here, since «’s variations during iterations turn this
algorithm into IV one-iteration anisotropic diffusion pro-
cesses, instead of one N-iterations process, according to
Perona and Malik’s initial work.

The parameters’ determination is a pre-processing, that
occurs before the JPEG2000-coded image is transmitted.
Once estimated, diffusion parameters are placed in the com-
pressed image file’s header.

4. EXPERIMENTAL RESULTS

We are presenting in this part results obtained on gray-
scale and color images. The JPEG2000 encoder we used is
JJ2000 v4.1. Results are given in terms of PSNR. As already
mentioned in 3.2, there are better image quality measures
than this one, alas none seems to have been proposed as a
freely available software application.

4.1. Grayscaleimages

Fig. 1 shows results obtained for the Bike image (gray-
scale, 2048 x 2560) at 0.0625bpp.

E

@) Cmpressed image (23.76dB)

%
=z

(c) Restored image (24.20dB)

"~ (d) Edges of (¢)

Fig. 1. Restoration of the Bike image (zoom)

We can notice an 0.44dB increase in terms of PSNR
(calculated for the whole 2048 x 2560 images) between the
compressed image Fig. 1.a (23.76dB) and the restored one
Fig. 1.c (24.20dB). Fig. 1.d shows oscillations-free edges, as
opposed to Fig. 1.b, and proves most ringing artifacts have
been successfully removed during restoration.
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4.2. Color images

Fig. 2 shows results for the Lena image (color, 512 x
512) at 0.25bpp.

(a) Compr. image (30.59dB)  (b) Rest. image (30.81dB)

Fig. 2. Restoration of the Lena image (zoom)

Again, we can notice the ringing artifacts’ removal, gi-
ving Fig. 2.b a better quality (from psychovisual point of
vue) than Fig. 2.a. This time, PSNR is improved from 30.59dB
(compressed image) to 30.81dB (restored image).

Table 1 presents more results on images Bike (2048 x
2560) and Lena (512 x 512), in grayscale (GS) and color
(C) versions, for various bitrates.

| Image | Bitrate | InitPSNR | Final PSNR |
Bike (GS) | 0.0625bpp | 23.76 dB 24.20 dB
Bike (GS) | 0.2500 bpp | 29.58 dB 29.92 dB
Bike (GS) | 0.5000 bpp | 33.47dB 33.68dB
Bike (C) | 0.0625bpp | 22.94dB 23.33dB
Bike (C) | 0.2500bpp | 28.18dB 2852 dB
Bike (C) | 0.5000 bpp | 31.32dB 31.55dB
Lena (GS) | 0.0625bpp | 26.63dB 26.88 dB
Lena (GS) | 0.2500 bpp | 32.60 dB 32.75dB
Lena (GS) | 0.5000 bpp 35.77dB 35.84 dB
Lena(C) | 0.0625bpp | 26.07 dB 26.35 dB
Lena (C) | 0.2500 bpp 30.59 dB 30.81 dB
Lena (C) | 0.5000bpp | 32.84dB 32.96 dB

Table 1. Results on various images and bitrates

5. CONCLUSION

In this paper, we’ve presented a Partial Differential Equa-
tions-based image restoration method, and used it in order to
remove ringing artifacts on low bitrate JJEG2000 images.
The main advantages of our method are its simplicity, the

fact that it includes a parameters’ estimation to work a to-
tally unsupervised way, and a low processing time (about 1
second for 1 iteration on a 512 x 512 color image?!, knowing
the complete restoration process hardly requires more than
20 iterations). We’ve been able to show promising results on
both grayscale and color images. These results may open up
new perspectives, especially for moving images, since stan-
dard video compression codecs happens to introduce visible
degradations similar to those we’re now able to remove on
still images.
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