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ABSTRACT

This paper presents a new filtering scheme for the removal
of impulsive noise in color images. It is based on estimat-
ing the probability density function for color pixels in a filter
window by means of the kernel density estimation method.
A quantitative comparison of the proposed filter with the
vector median filter shows its excellent ability to reduce
noise while simultaneously preserving fine image details.

1. INTRODUCTION

The reduction of noise in multichannel signal processing
has been the subject of extensive research during the last
years, primarily due to its importance to color image pro-
cessing, [7]. In order to achieve optimal filtering results,
the knowledge of the underlying statistical distribution of
the signal and noise is needed. These distributions are often
unknown and must be estimated from the data to prevent un-
realistic assumptions that deteriorate the filter performance.
If no information on the shape of the density distribution
is known, non-parametric density estimation can be used,
[1, 2]. The filter proposed in this paper is based on the non-
parametric technique ofParzenor Kernel Density Estima-
tion (KDE) [3], which is widely used in the field of pattern
recognition and classification.

2. VECTOR MEDIAN FILTER

Let the mapping:Zl → Zq represents a multichannel im-
age, wherel is an image dimension andq characterizes a
number of channels (q = 3 for color images). LetW =
{xi ∈ Zl; i = 1, 2, . . . , n} represents the samples in the fil-
ter window. Each input vectorxi can be associated with the
cumulative distance measureDi given by

Di =
n∑

j=1

||xi − xj || , i = 1, . . . , n , (1)

wherexi = (xi1 , . . . , xiq
) andxj = (xj1 , . . . , xjq

) charac-
terize twoq-dimensional vectors and‖ · ‖ denotes a chosen
vector norm. SinceD1, D2, ..., Dn are scalar values, their
ordered set can be written simply asD1 ≤ D2 ≤ . . . ≤ Dn.
If the same ordering is implied to the input setx1, . . . ,xn,
the ordered input set is described asx(1), x(2), . . . ,x(n)

and the vector median (VMF) output is given by the sam-
plex(1) from the input set that minimizes the sum of vector
distances with other vectors, [4].

3. KERNEL DENSITY ESTIMATION

Density Estimationdescribes the process of modelling the
probability density functionf(x) of a given sequence of
sample values drawn from an unknown density distribution.

The simplest form of density estimation is the histogram:
sample space is first divided into a grid, then the density at
the center of the grid cells is approximated by the number
of sample values that fall into one bin divided by the width
of one grid cell. The main disadvantage of the histogram is
the strong dependence of the histogram’s appearance on the
chosen bin-width and the origin of the grid.

Kernel Density Estimation, (KDE) avoids this disadvan-
tage by placing a ”bump” on every sample value in the sam-
ple space and then summing the heights of all bumps for
every value in the sample space. This results in a smooth
density estimates that are not affected by an arbitrarily cho-
sen partition of the sample space.

The multivariate kernel density estimator in theq-dimen-
sional case is defined as [1, 2]

f̂h(x) =
1
n

n∑
i=1

1
h1...hq

K
(

xi1−x1

h1
, ...,

xiq−xq

hq

)
, (2)

with K denoting a multidimensional kernel functionK : Rq

→ R andh1, ..., hq denoting bandwidths for each dimen-
sion. A common approach to build multidimensional kernel
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functions is to use aproduct kernel

K(u1, ..., uq) =
q∏

i=1

K(ui) , (3)

whereK is a one-dimensional kernel function.
Intuitively, the kernel function determines the shape of

the bumps placed around the sample values and the band-
widths h1, ..., hq their width in each dimension. In case
bandwidth is equal for all dimensions, multivariate radial-
symmetric kernel functions can be used. Equation (2) then
changes to

f̂h(x) =
1

nhq

n∑
i=1

K

(
||xi − x||

h

)
. (4)

The shape of the approximated density function depends
heavily on the bandwidth chosen for the density estimation.
Small values ofh lead to spiky density estimates showing
spurious features. On the other hand too big values ofh pro-
duce over-smoothed estimates that hide structural features.

The quality of a chosen bandwidth can in theory be de-
termined by comparing the true probability density function
f to the estimated densitŷf . Common criteria are theIn-
tegrated Squared Error (ISE), its expected value, theMean
Integrated Squared Error (MISE)and theAsymptotic Mean
Squared Error (AMISE)defined as

AMISE(h) =
1

nh
||K||22 + h2k

(
µk(K)

k!

)2

||fk||22, (5)

with ||K||22 =
∫

K2(x)dx andµj(K) =
∫

xjK(x)dx, j ∈
N for any square integrable functionK and order of the used
kernel functionk (usuallyk = 2). The optimal bandwidth
can be chosen as the minimizer ofISE(h), the minimizer
of MISE(h) or as the minimizer ofAMISE(h) - h∞.

Since in practice the true density functionf is unknown,
it is not possible to compute the exact bandwidths from the
sample values. Instead in most cases the bandwidth is com-
puted by the followingrule of thumb: differentiating Eq. (5)
with respect toh and calculating the root of the derivative
results in

h∞ =
(

||K||22
µ2

2(K)||f2||22
,

) 1
5

n−
1
5 , (6)

for q = 1 and the interesting casek = 2. The unknown
density functionf in this equation is now assumed to be
the standard normal distribution re-scaled to have the same
variance as the sample values. Choosing the Gaussian ker-
nel function forK, the optimal bandwidth is in the one-
dimensional casehopt = 1.06σ̂n−

1
5 , whereσ̂ denotes the

standard deviation, and respectively

hopt = (4/(q + 2))
1

q+4 σ̂ n−
1

q+4 (7)

for theq-dimensional case.

4. PROPOSED NOISE REDUCTION FILTER

The proposed filter is based on the idea of comparing im-
age pixels contained in a filter window to their adjacent
(neighbor) pixels. Filter output is that pixel in the filter
window that is most similar to its neighborhood. The es-
timated probability density function therefore serves as a
measure of similarity: usually the density estimate contains
a clear maximum because adjacent pixels form a cluster in
the color space, [5, 6]. If a pixel is similar to its neighbor-
hood, the density estimation for that pixel results in a big
value near the maximum. Noisy pixels on the other hand
are almost always outliers from the cluster formed by ad-
jacent pixels. Hence the density estimation for that pixels
results in very small values.

Fig. 1. Dependence of the filter efficiency (NCD) on the
constant bandwidth of the Gaussian kernel, for test images
LENA, PEPPERS, GOLDHILL contaminated by 5% impul-
sive noise. The value ofh = 55 was used for the compari-
son with standard filtering techniques shown in Tab. 1

Given a setW of noisy image samplesx1,x2, ...,xn

from the filter window as defined in section 2 let∼ denotes
the adjacency relation between two pixels contained inW .
Assuming the 8-neighborhood system, the central pixel will
have 8 adjacent neighbors, the pixels in the corners will have
3 adjacent neighbors and the remaining pixels inW will
have 5 adjacent neighbors determined by the∼ relation.

The probability density for samplexi is then estimated
as

f̂h(xi) =
∑

xj∼xi

K

(
||xj − xi||

h

)
. (8)

The filter output is defined as thatxi for which f̂h is max-
imal. In contrast to Eq. (4) the probability density is not
normalized to bandwidth and number of sample values. The
reason is that the values of̂fh for differentxi are only used
for comparison among each other and omission of normal-
ization results in a significant performance gain as it priv-
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Table 1. Filtering results achieved using test imageLENA
contaminated by impulsive noise using different kernels, (G
denotes the Gaussian kernel,Ep the kernel of Epanechnikov,
Ex the exponential kernel andTr the linear, triangle kernel).

Noisep 0.05 0.05 0.05 0.10 0.10 0.10
Criterion MAE MSE NCD MAE MSE NCD

Noisy 2.54 393.3 0.0415 5.10 790.2 0.0838
VMF 3.27 31.2 0.0387 3.42 34.2 0.0400
BVDF 3.81 39.8 0.0400 3.95 44.2 0.0412
DDF 3.39 32.8 0.0389 3.51 35.4 0.0400
HDF 3.42 31.2 0.0399 3.55 33.9 0.0412

G, L2, ad. 0.79 11.5 0.0093 0.98 20.2 0.0125
G, h = 55 0.42 11.8 0.0051 0.79 20.8 0.0100
G, L1, ad. 0.82 14.8 0.0101 1.16 24.9 0.0149
Ep, L2, ad. 1.17 15.3 0.0138 1.23 21.7 0.0151
Ex, L2, ad. 0.43 10.59 0.0055 0.84 34.16 0.0128
Tr, L2, ad. 0.45 14.01 0.0063 0.96 50.79 0.0159

x7 x6 x5

x8 x9 x4

x1 x2 x3

x7 x6

x8 x9

x1 x2

x8 x9

x1 x2

a) b) c)

Fig. 2. Illustration of the adjacency concept∼: the central
pixel x9 has 8 neighbors belonging to the filtering window,
the pixelx8 has then 5 adjacent neighbors and the pixelx1

has only three direct neighbors contained inW .

ileges the central sample, which has the largest number of
neighbors, (Fig. 2).

The bandwidth is determined according to Eq. (7) and
hence depends on the standard deviationσ̂. Sinceσ̂ is com-
puted using only a few pixels from the filter window, the
bandwidth is sensitive to noise if it is computed this way
and may vary over a big range of values. As an option an
experimentally chosen fixed value can be used as bandwidth
to avoid this effect, (see Fig. 1).

5. FILTERING RESULTS

For evaluation purposes, the color test image LENA was
corrupted with1 to 10 percent impulsive noise defined by

xij =

{
vij with probabilityp,

xij else,
(9)

where i, j define a pixel position,p describes the inten-
sity of the noise process,xij denotes the original image

pixel andvij denotes a pixel corrupted by the noise pro-
cessvij = {νR, νG, νB}, whereνR, νG, νB are random in-
teger variables from the interval[0, 255] updated for each
corrupted pixel.

Filter quality is measured inMean Absolute Error(MAE),
Mean Square Error(MSE), Signal to Noise Ratio(SNR)
andNormalized Color Difference(NCD), [7]. In general,
these criteria reflect the filter capabilities of the signal de-
tail preservation (MAE), the noise suppression (MSE, SNR)
and the color chromaticity preservation (NCD).

Tab. 1 and Fig. 4 show the results of a quantitative
and subjective comparison between the new filter scheme
and the VMF as well as the Basic Vector Directional Fil-
ter (BVDF), Directional Distance Filter (DDF) and Hybrid
Directional Filter (HDF), [7].

For experiments with fixed bandwidth a value ofh = 55
was chosen, which brought subjectively good but not opti-
mal results. As can be seen from Tab. 1 the noise reduction
capability depends on the choice of the filter kernel.

Apart from the sometimes up to a few times lower MAE
and NCD values compared with the vector median, the new
filter shows enormous improvements in detail preservation
for every used filter structure, (Figs. 3 and 4). The remark-
ably good results for the density estimation with fixed band-
width indicate that the presented method of adaptive band-
width selection does not work well enough for the impulsive
noise and further research on this problem is needed.

6. CONCLUSIONS

The experimental results show that the biggest advantage of
the new filter is its excellent image detail preservation, (Tab.
1, Figs. 3, 4). The always very low values of MAE and
NCD show that the new filter is clearly superior to VMF,
BVDF, HDF and DDF in terms of detail preservation for all
used filter kernels. Further, the comparison of different filter
settings shows that the problem of choosing the bandwidth
adaptive to the sample data is not yet completely solved and
should be investigated in the future work.

Another advantage of the proposed filtering class is its
low computational complexity compared to the VMF. For
the VMF filtering the calculation of 36 distances between
pixels are needed, whereas the new filter structure, with
fixed bandwidth, requires only 20 different distances, which
makes the new filter class interesting for real-time applica-
tions
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Fig. 3. Results obtained with the new filtering framework
in terms of MAE and MSE. The plots show the new fil-
ter performance for the Gaussian kernel with adaptive and
constant bandwidthh = 55, in comparison with the vector
median filter.
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a)
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d)

Fig. 4. Illustration of the efficiency of the new filter in com-
parison with the VMF:a) parts of test imageLENA, b) test
images corrupted by impulsive noise -p = 0.05, c) VMF
output,d) new filter output using the Gaussian kernel and
the adaptive scheme with theL2 vector norm.
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