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ABSTRACT

This paper presents a new filtering scheme for the removal
of impulsive noise in color images. It is based on estimat-
ing the probability density function for color pixels in a filter
window by means of the kernel density estimation method.
A quantitative comparison of the proposed filter with the
vector median filter shows its excellent ability to reduce
noise while simultaneously preserving fine image details.

1. INTRODUCTION

The reduction of noise in multichannel signal processing

has been the subject of extensive research during the las

years, primarily due to its importance to color image pro-
cessing, [7]. In order to achieve optimal filtering results,
the knowledge of the underlying statistical distribution of

unknown and must be estimated from the data to prevent un
realistic assumptions that deteriorate the filter performance.
If no information on the shape of the density distribution
is known, non-parametric density estimation can be used,
[1, 2]. The filter proposed in this paper is based on the non-
parametric technique d®arzenor Kernel Density Estima-
tion (KDE) [3], which is widely used in the field of pattern
recognition and classification.

2. VECTOR MEDIAN FILTER

Let the mapping:Z! — Z? represents a multichannel im-
age, wherd is an image dimension angdcharacterizes a
number of channelsg(= 3 for color images). LetV =
{x; € Z4;i=1,2,...,n} represents the samples in the fil-
ter window. Each input vectot; can be associated with the
cumulative distance measukg given by

Di:ZHXi_XjH’ i:l,...,n, (1)
j=1
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wherex; = (z;,,...,2;,) andx; = (z;,,...,x;,) charac-
terize twog-dimensional vectors anfl- || denotes a chosen
vector norm. SinceéDq, D, ..., D,, are scalar values, their
ordered set can be written simplyBs < Dy < ... < D,,.

If the same ordering is implied to the input sat, . . . , x,,

the ordered input set is described=s), X(2), - .., Xn)
and the vector median (VMF) output is given by the sam-
plex(;y from the input set that minimizes the sum of vector
distances with other vectors, [4].

3. KERNEL DENSITY ESTIMATION

Pensity Estimatiordescribes the process of modelling the
probability density functionf(z) of a given sequence of
sample values drawn from an unknown density distribution.
The simplest form of density estimation is the histogram:
sample space is first divided into a grid, then the density at

"he center of the grid cells is approximated by the number

of sample values that fall into one bin divided by the width
of one grid cell. The main disadvantage of the histogram is
the strong dependence of the histogram’s appearance on the
chosen bin-width and the origin of the grid.

Kernel Density Estimation, (KDE) avoids this disadvan-
tage by placing a "bump” on every sample value in the sam-
ple space and then summing the heights of all bumps for
every value in the sample space. This results in a smooth
density estimates that are not affected by an arbitrarily cho-
sen partition of the sample space.

The multivariate kernel density estimator in thdimen-
sional case is defined as [1, 2]

" e 1
Ju(x) = n;hl...hqlc<

with IC denoting a multidimensional kernel functid: R?
— R andhy, ..., hy denoting bandwidths for each dimen-
sion. A common approach to build multidimensional kernel

Ti, — 1

hy
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functions is to use product kernel 4. PROPOSED NOISE REDUCTION FILTER

1 The proposed filter is based on the idea of comparing im-

K(u,...,uq) = HK(“i)v (3) age pixels contained in a filter window to their adjacent
_ _ _ i=1 _ (neighbor) pixels. Filter output is that pixel in the filter
whereK is a one-dimensional kernel function. window that is most similar to its neighborhood. The es-

Intuitively, the kernel function determines the shape of timated probability density function therefore serves as a
the bumps placed around the sample values and the bandmeasure of similarity: usually the density estimate contains
widths hy, ..., hy their width in each dimension. In case ga clear maximum because adjacent pixels form a cluster in
bandwidth is equal for all dimensions, multivariate radial- the color space, [5, 6]. If a pixel is similar to its neighbor-
symmetric kernel functions can be used. Equation (2) thenhood, the density estimation for that pixel results in a big

changes to value near the maximum. Noisy pixels on the other hand
R ;& [ are alm(_)st always outliers from the _clust.er formed by_ ad-
fr(x)=— Z K (1) ) 4) jacent pixels. Hence the density estimation for that pixels

nhd o h results in very small values.

The shape of the approximated density function depenf‘N; .
heavily on the bandwidth chosen for the density estimatiol
Small values ofh lead to spiky density estimates showing
spurious features. On the other hand too big valuésb-
duce over-smoothed estimates that hide structural feature |
The quality of a chosen bandwidth can in theory be de GOLDHILL
termined by comparing the true probability density functiol ¢ 4
f to the estimated densitf/. Common criteria are thin-

tegrated Squared Error (ISEjts expected value, thidean 6
Integrated Squared Error (MISE)nd theAsymptotic Mean PEPPERS (ena
Squared Error (AMISEYefined as 551

i (K)
k!

2
AMISE(h) = %HKH% + h2* < ) kaHg, (5) 530 35 40 45 50 55 60 65 e 75 R 80
with [|K|[5 = [ K*(z)dx andp;(K) = [ 2/ K(x)dx,j € Fig. 1. Dependence of the filter efficiency (NCD) on the
Nfor any square integrable functidtiand order of the used  ¢onstant bandwidth of the Gaussian kernel, for test images

kernel functionk (usually_k _2_2). The optimal bal’ldWIdth LENA PEPPERSGOLDHILL contaminated by 5% impul-
can be chosen as the minimizer &8 £(h), the minimizer  gjye noise. The value df = 55 was used for the compari-

of MISE(h) or as the minimizer dHM ISE(h) - hoo. son with standard filtering techniques shown in Tab. 1
Since in practice the true density functigis unknown,

it is not possible to compute the exact bandwidths fromthe  Given a sefiv of noisy image sampleg;, xs, ..., X,
sample values. Instead in most cases the bandwidth is com 1, the filter window as defined in section 2 letdenotes
puted by the followingule of thumb differentiating Eq. (5) the adjacency relation between two pixels containetin
with respect toh and calculating the root of the derivative Assuming the 8-neighborhood system, the central pixel will

results in have 8 adjacent neighbors, the pixels in the corners will have
|| K |2 5 3 adjacent neighbors and the remaining pixeldiinwill
hoo = (HQ(K)W ,> nos, (6) have 5 adjacent neighbors determined by-theslation.
2 2

The probability density for samptle; is then estimated

for ¢ = 1 and the interesting cage = 2. The unknown as
density functionf in this equation is now assumed to be 5 Z % <||xj - xi||) ®)
= )

the standard normal distribution re-scaled to have the same Fu(xi) =
variance as the sample values. Choosing the Gaussian ker-

nel function for K, the optimal blandwidth is in the one-  The filter output is defined as tha for which £, is max-
dimensional casé.,: = 1.066n" =, whereg denotes the  jmal. In contrast to Eq. (4) the probability density is not
standard deviation, and respectively normalized to bandwidth and number of sample values. The
reason is that the values 36;{ for differentx; are only used

XXy

1 1
— F4 A Y . . .
hopt = (4/(q +2)) 7 G- () for comparison among each other and omission of normal-
for theg-dimensional case. ization results in a significant performance gain as it priv-
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pixel andv;; denotes a pixel corrupted by the noise pro-
cessv,; = {vgr,vq,vp}, Wherevg, v, v are random in-
teger variables from the interv@, 255] updated for each
corrupted pixel.

Filter quality is measured illean Absolute Erro(MAE),
Mean Square Erroi(MSE), Signal to Noise RatigSNR)
Noisep | 0.05| 0.05| 0.05| 0.10| 0.10| 0.10 and Normalized Color DifferencéNCD), [7]. In general,
Criterion | MAE| MSE| NCD| MAE| MSE| NCD these criteria reflect the filter capabilities of the signal de-

Noisy | 2.54| 393.3 0.041% 5.10| 790.7 0.0838 tail preservation (MAE), the noise suppression (MSE, SNR)

VME 3.27| 31.2| 0.0387 3.42| 34.2| 0.040¢ and the color chromaticity preservation (NCD).

BVDF 3.81| 39.8| 0.0400 3.95| 44.2| 0.0412 Tab. 1 and Fig. 4 show the results of a quantitative
DDF 3.39| 32.8]/ 0.0389 3.51| 35.4| 0.040¢ and subjective comparison between the new filter scheme

HDF 3.42| 31.2| 0.0399 3.55| 33.9| 0.0412 and the VMF as well as the Basic Vector Directional Fil-
G, Lo, ad.| 0.79| 11.5/ 0.0093 0.98] 20.2| 0.0124 ter (BVDF), Directional Distance Filter (DDF) and Hybrid

G, h =55 0.42| 11.8| 0.0051 0.79| 20.8| 0.0100  Directional Filter (HDF), [7].
G, L,,ad.| 0.82| 14.8| 0.0101 1.16| 24.9| 0.0149 For experiments with fixed bandwidth a valueghof= 55

Ep, Ly, ad| 1.17| 15.3| 0.0138 1.23| 21.7| 0.0151 was chosen, which brought subjectively good but not opti-
Ex, Lo, ad| 0.43| 10.59 0.0055 0.84| 34.16 0.0124 mal results. As can be seen from Tab. 1 the noise reduction

Tr, Lo, ad,| 0.45| 14.01 0.0063 0.96| 50.79 0.0159 capability depends on the choice of the filter kernel.

Apart from the sometimes up to a few times lower MAE
and NCD values compared with the vector median, the new
filter shows enormous improvements in detail preservation
for every used filter structure, (Figs. 3 and 4). The remark-
ably good results for the density estimation with fixed band-
width indicate that the presented method of adaptive band-
X7 | Xg | X5 x7 | Xg width selection does not work well enough for the impulsive
noise and further research on this problem is needed.

Table 1. Filtering results achieved using test imddgeNA
contaminated by impulsive noise using different kernels, (
denotes the Gaussian kernghthe kernel of Epanechnikov,
Ex the exponential kernel aritt the linear, triangle kernel).

X1 | X2 | X3 X1 | X2 X1 | X9

X8 | X9 | X4 Xg | X9 Xg | X9

a) b) <)

Fig. 2. lllustration of the adjacency concept the central 6. CONCLUSIONS
pixel x9 has 8 neighbors belonging to the filtering window,
the pixelxg has then 5 adjacent neighbors and the pixel
has only three direct neighbors containediin

The experimental results show that the biggest advantage of
the new filter is its excellent image detail preservation, (Tab.
1, Figs. 3, 4). The always very low values of MAE and
NCD show that the new filter is clearly superior to VMF,

ileges the central sample, which has the largest number of8VDF, HDF and DDF in terms of detail preservation for all

neighbors, (Fig. 2). used filter kernels. Further, the comparison of different filter
The bandwidth is determined according to Eq. (7) and Settings shows that the problem of choosing the bandwidth
hence depends on the standard deviatioBinces is com- ~ adaptive to the sample data is not yet completely solved and

puted using only a few pixels from the filter window, the should be investigated in the future work.

bandwidth is sensitive to noise if it is computed this way ~ Another advantage of the proposed filtering class is its
and may vary over a big range of values. As an option an /oW computational complexity compared to the VMF. For

experimentally chosen fixed value can be used as bandwidttihe VMF filtering the calculation of 36 distances between

to avoid this effect, (see Fig. 1). pixels are needed, whereas the new filter structure, with
fixed bandwidth, requires only 20 different distances, which
5. FILTERING RESULTS makes the new filter class interesting for real-time applica-
tions
For evaluation purposes, the color test image LENA was
corrupted withl to 10 percent impulsive noise defined by 7. REFERENCES
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Fig. 3. Results obtained with the new filtering framework
in terms of MAE and MSE. The plots show the new fil-
ter performance for the Gaussian kernel with adaptive and
constant bandwidth = 55, in comparison with the vector
median filter.
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