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ABSTRACT 2. PROBLEM FORMULATION

In this paper we consider the estimation of the unknown hyperpa- ~qnsider a sensor array wifh x L sensors, each sensor having
rameters for the problem of reconstructing a high-resolution image Ni x Na pixels and the size of each sensin’g element b@ing
from multiple undersampled, shifted, degraded frames with sub- T». Our aim is to reconstruct abl; x Ms high resolution image,
pixel displacement errors. We derive mathematical expressionswhereM1 — Ly x Ny andMs = Ly x Na, from Ly x L low-
for the iterative calculation of the maximum likelihood estimate
(mle) of the unknown hyperparameters given the low resolution
observed images. Experimental results are presented for evaluat
ing the accuracy of the proposed method.

resolution observed images.

Note that in order for our goal to make sense we need to
assume that the original high-resolution scene is bandlimited to
wavenumberd.; /(271) and L2 /(27%) along the horizontal and
vertical directions, respectively. To maintain the aspect ratio of the

1. INTRODUCTION reconstructed image we consider the case where- L, = L.
In the ideal case, the low resolution sensors are shifted with
High resolution images can be obtained directly from high pre- respect to each other by a value proportionaltdL x 1% /L (note
cision optics and CCD devices. However, due to hardware andthat if the sensors are shifted by values proportiondhte 75 the
cost limitations, as well as limitations arising from the underlying high-resolution image reconstruction problem becomes singular).
physics of the imaging problem, imaging systems often provide However, in practice there can be small perturbations around those

us with only multiple low resolution images. Low resolution im- ideal locations. Thus, fds,l> = 0, ..., L — 1, the horizontal and
ages are common in many imaging applications, such us remotevertical displacementg’ ;, anddy, ,, of the[l1, l»]-th sensor with
sensing, surveillance and astronomy. respect to th¢0, 0]-th reference sensor are given by

Over the last two decades research has been devoted to the
problem of reconstructing a high-resolution image from multiple
undersampled, shifted, degraded frames with subpixel displace-
ment errors (see [1] and [2] and references therein). However, as
reported in [3], not much work has been devoted to the efficient Wheree; ;, ande}, ;, denote respectively the normalized horizon-
calculation of the reconstruction or the estimation of the associ- tal and vertical displacement errors. We assume|éiat,| < 1/2
ated hyperparameters (see, however, [4], [5], and [6]. andlef) ;o] < 1/2 with €5 = €5, = 0. The normalized hor-

In this paper we use the general framework for frequency do- izontal and vertical displacement are assumed to be known (see
main multi-channel signal processing developed in [7] and [8] to [9, 10] for details). In [11] we can find an approach where the
tackle the estimation of hyperparameters in high resolution prob- displacements are assumed unknown and are estimated simultane-
lems. With the use of block-semi circulant (BSC) matrices all the ously with the high-resolution image.
matrix calculations involved in the hyperparameter mle can be per-
formed in the Fourier domain. The proposed approach can be used
to assign the same hyperparameter to all low resolution images or

make them image dependent. Let f be the(M; x M) x 1 high resolution image ang ;2 the

The rest of the paper is organized as follows. The problem ( L
L h . ; . . . (N1 x N2) x 1 observed low resolution image from tfid, [2)-th
formulation is described in section 2. Section 3 describes the h'ghsensor,(ll,IQ) € {0,...1 - 1}2_ Our goal is to reconstrudt

SOt P Iage Mmocel and e process Lo obar he o om (g (11,12) € 0.... L. 1]). n order t apoy e
ag A 9 ; pplice Bayesian paradigm to this problem we define next our image and
of the Bayesian paradigm to calculate the maximamosteriori : .
. o ; . high to low degradation models.
high resolution image and to estimate the hyperparameters is de-
scribed in section 4. Experimental results are described in section
5. Finally, section 6 concludes the paper. 3.1. Image Model

T

T T xT
di12 = fl(ll + €1,12) anddy, ;5 = f(b +ehpe), @)

3. IMAGE AND DEGRADATION MODELS

*This work has been partially supported by the “CodisNacional de Our prior knowledge about the smoothness of the object luminos-
Ciencia y Tecnolo@” under contract TIC2000-1275. ity distribution makes it possible to model the distributionfdfy
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a simultaneous autoregression (SAR):

p(Fla) = exp{~at'C'CH), @

L
Zprior (OC)

where the parameter measures the smoothness of the ‘true’ im-

age, Zprior(a) = ([T, ; A%) /2 (2m /o) M M212 55 =1 —
2¢(cos(2mi/My) + cos(2mj/M2)), i = 1,2,..., My, j = 1,2,
..., Ms, andC is the Laplacian operator.

3.2. Model for obtaining the low-resolution observed images

The process to obtain the observed low resolution image by the

(11,12)-th sensorg;1 2, from f can be modeled as follows. First,

112 is obtained. This image represents a blurred version of the

original high-resolution one, according to

101 = Hyy pof, (3)
whereH;; 12 is an(M; x M2) x (My x M) matrix and may have
different forms. In [12]h; has the form

w=—(L—-1),...,0
otherwise

mw={ § @

Note that in this casehi, = h%.Vi,e! = 0, the normal-

ized horizontal and vertical displacement errors in Eq. (1) satisfy

€fi2 = €} o = 0andHy ;o = H,VI1,12 =0,...,L — 1.
Let D;; andD;2 now be the 1-D downsampling matrices de-
fined by
Du=1In® e, Dip=1In,® e, %)
wherel , is the N; x IN; identity matrix,e; is theL x 1 unit vector
whose nonzero element is in th¢h position, andr denotes the

Then
p(glf. B) ox ———
= Znoise(é)
=
X exp | =3 “220 l;)ﬂle | g2 — Winef |7, (11)

where8 = (G112 | (11,12) € {0, .. ., L—1}?), andZnoise(B) =

Lo Tzt Z(Buvsz).
4. BAYESIAN ANALYSIS

In this paper we follow the steps described below to estimate the
hyperparametersy and3, and the original image.

Step I: Estimation of the hyperparameters

aandf = (Buel(11,12) € {0,...,L — 1}?) are first se-
lected as

d,é = argmax Lg (o, §) = arg maﬁx log p(gla, 8), (12)

a,B

plgla, §) = / p(Ela)p(gl£, B)df.

Step II: Estimation of the original image

Once the hyperparameters have been estimated, the estimation
of the original imagef(@ﬁ), is selected as the image which mini-

mizes

Kronecker product operator. Then for each sensor the discrete low-

resolution observed imagg: ;2 can be written as

gi1,i2 = Dix o Hyn iof + vino, (6)

where
Dii,2 = D @ Dy, (7
denotes thé Ny x N2) x (M1 x M2) 2D downsampling matrix and
vi1,12 IS modeled as independent white noise with varia@f;@-;Q.
If W12 denotes thé N1 x Na2) x (M1 x Ms) matrix

Wii,i2 = Di1ioHia o, (8)
then we have
1
p(gz1,l2|f7 ﬁu,lz) X m
< o |- - Want P, @

where Z(Bi1,2) = (21/Bi1,12) V1 *N2)/2 We denote by the
sum of the upsampled low resolution images, that is,

L—-1L-1

g = Z Z Dz,ugu,w

u=0 v=0

(10)

L—1L-1
all cf |+ Z Z Bz || gz — Wief |?, (13)
11=012=0
so, we have
L L-1L-1
fap =Q <6¢,§> Z Z B2 Wi 1281112, (14)
11=012=0
where
L—1L-1
Q(a,3) = aC'C + Z Z Bri2Wi Wiz, (15)
11=012=0

Note that we are using maximum likelihood for estimating the
hyperparameter anghaximum a posterioffMAP) for estimating
f. Furthermore, although steps | and Il are separated, the iterative
scheme proposed next performs both estimations simultaneously.

The estimation process we are using could be performed within
the so called hierarchical Bayesian approach [13] by including hy-
perpriors on the unknown hyperparameteand hypervectoﬁ.
However, the possibility of incorporating additional knowledge on
them by means of gamma or other distributions will not be dis-
cussed here (see [13)).

Differentiating —2L¢ («, 3) with respect tax and3 so as to
find the conditions satisfied at the maxima, we have

M1><M2

I Chag) IIF +11(Q(e, )" C°C) = ———=, (16)
| 1,2 — Wini2f(a,) I thr[Q(Oé,ﬁ)ilwﬁ,lzwn,zz]
= M2 - for 11,12 =0,...,L— 1. (17)
11,12
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We will use the following algorithm for the estimation of the
hyperparameters and the high-resolution image

1. Choosex’ and3°.
2. Computef,o0 g0, using Eq. (14) withs = o°, 3 = 3°.
3. Repeatfok =1,2,...

i) Calculatea” andg* by substitutinga*~* andg*~*
in the left hand side of Egs. (16) and (17).

ii) Computef i sy by Eq. (14) witha = o, 3 = g*.

until || £or gry — fak-1 gr—-1y | is less than a prescribed
bound. a

Note that if the same hyperparameter is used for certain low .
resolution observations, Egs. (16) and (17) become easier to cal-
culate. 4

Equations (16) and (17) can also be obtained with the EM- &
algorithm [14] with Xt = (f',g) and) = g = [0 I]*X to
iteratively increas&g(a, 3).

5. EXPERIMENTAL RESULTS

algorithm over a set of images. Here we present results on one
image. The criterion
Fig. 1. a) Original256 x 256 high-resolution image, b) zero-order
| £k iy — Far—1 gr—1y I 6 hold for the 30dB SNR observatiaggyo, ) initial high resolution
— )7”2 10 image and d) estimated high resolution image.

|| f(ak—l’gk—l

was used for terminating iterations. We §8t= g, whereg has
been defined in Eq. (10), and the initial values of the hyperparam-

eters although higher improvements are obtained as the noise decreases.

Each low resolution set of 16 observed images was bilinearly in-
terpolated to obtain 856 x 256 image. For all cases, the best

1 || Cf° |2 results using bilinear interpolation are only slightly better than the
o M x M’ initial image. Table 2 also shows the number of iterations needed
1 | g2 — Wi 1of© || fprthe method to rgach convergence accord_lng tc_J the utilized crite-
FEro. = : N x N7 , rion. For all sets of images no more than 13 iterations were needed.
11,12 . 2 Each iteration took about 15.5 seconds on a Pentium IV 1700.

The estimated image model parameters for the 10, 20 and
30dB SNR sets ofimages wese ' = 217.44, 192.22 and200.30,

b ing the SNR i m, - 10 ) respectively. The estimated noise variances for the low resolution

y measuring the Improvemenbsyr = X logyg images are presented in table 3. We conclude that the proposed

2 2 £ e 1
(I f—gl|” /| f—f][], wheref andf are the original and esti-  method produces accurate estimations of the low resolution image
mated high resolution images, respectively. variances for all SNRs.

According to Eq. (6) the original image, shown in Fig. 1a, was
blurred using Eq. (4), to obtain = Hf. Thenu was downsam-
pled withL; = Lo = 4, thus obtaining 16 low resolution images,
wii2(z,y) = w(Lix + 11, Loy + 12), z,y = 0,..., % -1,
11,12 = 0,...,3. Gaussian noise was added to each low reso- 6. CONCLUSIONS
lution image to obtain three sets of sixteen low resolution images
with 10, 20 and 30dB SNRs. The noise variances for each set of
images are shown in table 1. Figure 1b depicts the zero-order holdA new method to estimate the unknown hyperparameters in a high
upsampled imagegoo for 30dB SNR. The initial imagef® = g, resolution image reconstruction problem has been proposed. Us-
for the 30dB set according to Eg. (10) is shown in Fig. 1c and the ing BSC matrices all the matrix calculations involved in the hy-
estimated high-resolution one in Fig. 1d. Visual inspection shows perparameter mle can be performed in the Fourier domain. The
that the proposed method provides a substantial improvement.  approach followed can be used to assign the same hyperparame-
Numerical results for the three sets of images with SNRs of ter to all low resolution image hyperparameters or to make them
10, 20 and 30dB are summarized in table 2. Itis clear that the pro-image dependent. The proposed method has been validated exper-
posed method improves the SNR even in the case of severe noisémentally.

fori1,12=0,...,L — 1.
The performance of the restoration algorithms was evaluated
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Table 1. Noise variances for the low resolution image set with
SNR of 10dB, 20db and 30db.

| (o [ O [ 1 | 2 | 3 |

10dB 0 163.19| 161.62 | 162.53| 161.63
1 163.11| 162.27 | 163.54 | 161.37
2 163.19| 163.45| 161.66| 161.34
3 163.11| 162.18 | 162.31| 161.82

20dB 0 1479 | 1475 | 1473 | 14.72
1 1489 | 14.70 | 14.85 | 14.72
2 1481 | 1481 | 14.71 | 14.70
3 1484 | 1474 | 1485 | 14.69

30dB 0 1.47 1.46 1.46 1.46
1 1.47 1.46 1.47 1.46
2 1.47 1.47 1.46 1.46
3 1.47 1.46 1.46 1.46

Table 2. Summary of results for the three different low resolution
image sets.

Low resolution SNR (dB)| 10 20 30

Bilin. interp. Asyr (dB) | 0.52 | 0.24 0.21

Proposed algAsyr (dB) | 6.168 | 7.924 | 10.723
Iterations 4 13 13

Table 3. Estimated noise variances for the 10dB, 20dB and 30dB

SNR low resolution image sets.

y [ Bain] O | 1 2 3

10dB| O 166.35] 160.12 ] 158.04 160.00
1 160.06 | 160.98 | 162.36 | 160.71
2 157.46 | 160.58| 162.98| 156.90
3 164.79 | 165.44| 155.55| 160.97

20dB| O 15.71 | 15.07 | 14.27 | 14.43
1 1513 | 14.84 | 14.49 | 14.72
2 14.88 | 14.89 | 14.44 | 13.96
3 1553 | 1552 | 13.92 | 14.35

30dB| O 153 1.48 1.38 1.40
1 1.47 1.46 1.36 1.38
2 1.46 1.41 1.39 1.35
3 1.51 1.54 1.28 1.34

7. REFERENCES

[1] A. Averbuch and Y. Keller, “FFT based image registration,”
in 2002 IEEE International Conference on Acoustics, Speech
and Signal Processin@002, vol. 4, pp. 3608—-3611.

[2] H. Shekarforoush, M. Berthod, and J. Zerubia, “Subpixel im-
age registration by estimating the polyphase decomposition
of cross power spectrum,” iRroceedings IEEE Conference
on Computer Vision and Pattern Recognitid®96, pp. 532—
537.

[3] S. Borman and R. Stevenson, “Spatial resolution enhance-
ment of low-resolution image sequences. A comprehensive
review with directions for future research,” Tech. Rep., Lab-
oratory for Image and Signal Analysis, University of Notre
Dame, 1998.

[4] N. K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in
superresolution using L-curveJEEE International Sympo-
sium on Circuits and Systemeol. 2, pp. 433—436, vol 2.,
2001.

[5] N. Nguyen, Numerical Algorithms for superresolutipn
Ph.D. thesis, Stanford University, 2001.

[6] N. Nguyen, P. Milanfar, and G. Golub, “A computationally
efficient superresolution image reconstruction algorithm,”
IEEE Trans. on Image Processingol. 10, no. 4, pp. 573—
583, 2001.

[7] A. K. Katsaggelos, K. T. Lay, and N. P. Galatsanos, “A gen-
eral framework for frequency domain multi-channel signal
processing,” IEEE Transactions on Image Processingl.

2, no. 3, pp. 417-420, 1993.

[8] M. R. Banham, N. P. Galatsanos, H. L. Gonzalez, and A. K.
Katsaggelos, “Multichannel restoration of single channel im-
ages using a wavelet-based subband decompositi&tE
Transactions on Image Processjngpl. 3, no. 6, pp. 821—
833, 1994.

[9] N. K. Bose and K. J. Boo, “High-resolution image recon-
struction with multisensors Jhternational Journal on Imag-
ing Systems and Technology!l. 9, pp. 141-163, 1998.

[10] M. K. Ng and A. M. Yip, “A fast MAP algorithm for high-
resolution image reconstruction with multisensoidyiltidi-
mensional Systems and Signal Processioy 12, pp. 143—
164, 2001.

[11] B. C. Tom, N. P. Galatsanos, and A. K. Katsaggelos, “Re-
construction of a high resolution image from multiple low
resolution images,” irBuper-Resolution Imaging. Chaud-
huri, Ed., chapter 4, pp. 73-105. Kluwer Academic Publish-
ers, 2001.

[12] D. Rajan and S. Chaudhuri, “An MRF-based approach to
generation of super-resolution images from blurred observa-
tions,” Journal of Mathematical Imaging and Visiovol. 16,
pp. 5-153, 2002.

[13] N. P. Galatsanos, V. Z. Mesarovic, R. Molina, A. K. Kat-
saggelos, and J. Mateos, “Hyperparameter estimation in im-
age restoration problems with partially-known blur&pti-
cal Engineeringvol. 41, no. 8, pp. 1845-1854, 2002.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete dataJournal of the Royal
Statistics Society Brol. 39, pp. 1-38, 1972.

" -712




