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ABSTRACT

In this paper we consider the estimation of the unknown hyperpa-
rameters for the problem of reconstructing a high-resolution image
from multiple undersampled, shifted, degraded frames with sub-
pixel displacement errors. We derive mathematical expressions
for the iterative calculation of the maximum likelihood estimate
(mle) of the unknown hyperparameters given the low resolution
observed images. Experimental results are presented for evaluat-
ing the accuracy of the proposed method.

1. INTRODUCTION

High resolution images can be obtained directly from high pre-
cision optics and CCD devices. However, due to hardware and
cost limitations, as well as limitations arising from the underlying
physics of the imaging problem, imaging systems often provide
us with only multiple low resolution images. Low resolution im-
ages are common in many imaging applications, such us remote
sensing, surveillance and astronomy.

Over the last two decades research has been devoted to the
problem of reconstructing a high-resolution image from multiple
undersampled, shifted, degraded frames with subpixel displace-
ment errors (see [1] and [2] and references therein). However, as
reported in [3], not much work has been devoted to the efficient
calculation of the reconstruction or the estimation of the associ-
ated hyperparameters (see, however, [4], [5], and [6].

In this paper we use the general framework for frequency do-
main multi-channel signal processing developed in [7] and [8] to
tackle the estimation of hyperparameters in high resolution prob-
lems. With the use of block-semi circulant (BSC) matrices all the
matrix calculations involved in the hyperparameter mle can be per-
formed in the Fourier domain. The proposed approach can be used
to assign the same hyperparameter to all low resolution images or
make them image dependent.

The rest of the paper is organized as follows. The problem
formulation is described in section 2. Section 3 describes the high
resolution prior image model and the process to obtain the low
resolution images from the high resolution one. The application
of the Bayesian paradigm to calculate the maximuma posteriori
high resolution image and to estimate the hyperparameters is de-
scribed in section 4. Experimental results are described in section
5. Finally, section 6 concludes the paper.

∗This work has been partially supported by the “Comisión Nacional de
Ciencia y Tecnoloǵıa” under contract TIC2000-1275.

2. PROBLEM FORMULATION

Consider a sensor array withL1 ×L2 sensors, each sensor having
N1 × N2 pixels and the size of each sensing element beingT1 ×
T2. Our aim is to reconstruct anM1 ×M2 high resolution image,
whereM1 = L1 ×N1 andM2 = L2 ×N2, from L1 × L2 low-
resolution observed images.

Note that in order for our goal to make sense we need to
assume that the original high-resolution scene is bandlimited to
wavenumbersL1/(2T1) andL2/(2T2) along the horizontal and
vertical directions, respectively. To maintain the aspect ratio of the
reconstructed image we consider the case whereL1 = L2 = L.

In the ideal case, the low resolution sensors are shifted with
respect to each other by a value proportional toT1/L×T2/L (note
that if the sensors are shifted by values proportional toT1×T2 the
high-resolution image reconstruction problem becomes singular).
However, in practice there can be small perturbations around those
ideal locations. Thus, forl1, l2 = 0, . . . , L− 1, the horizontal and
vertical displacementsdx

l1,l2 anddy
l1,l2 of the[l1, l2]-th sensor with

respect to the[0, 0]-th reference sensor are given by

dx
l1,l2 =

T1

L
(l1 + εx

l1,l2) anddy
l1,l2 =

T2

L
(l2 + εy

l1,l2), (1)

whereεx
l1,l2 andεy

l1,l2 denote respectively the normalized horizon-
tal and vertical displacement errors. We assume that|εx

l1,l2| < 1/2
and |εy

l1,l2| < 1/2 with εx
0,0 = εy

0,0 = 0. The normalized hor-
izontal and vertical displacement are assumed to be known (see
[9, 10] for details). In [11] we can find an approach where the
displacements are assumed unknown and are estimated simultane-
ously with the high-resolution image.

3. IMAGE AND DEGRADATION MODELS

Let f be the(M1 ×M2)× 1 high resolution image andgl1,l2 the
(N1×N2)×1 observed low resolution image from the(l1, l2)-th
sensor,(l1, l2) ∈ {0, . . . L − 1}2. Our goal is to reconstructf
from

{
gl1,l2 | (l1, l2) ∈ {0, . . . L− 1}2

}
. In order to apply the

Bayesian paradigm to this problem we define next our image and
high to low degradation models.

3.1. Image Model

Our prior knowledge about the smoothness of the object luminos-
ity distribution makes it possible to model the distribution off by
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a simultaneous autoregression (SAR):

p(f |α) =
1

Zprior(α)
exp{−1

2
α f tCtCf}, (2)

where the parameterα measures the smoothness of the ‘true’ im-
age,Zprior(α) = (

∏
i,j λ2

ij)
−1/2(2π/α)(M1×M2)/2, λij = 1 −

2φ(cos(2πi/M1) + cos(2πj/M2)), i = 1, 2, . . . , M1, j = 1, 2,
. . . , M2, andC is the Laplacian operator.

3.2. Model for obtaining the low-resolution observed images

The process to obtain the observed low resolution image by the
(l1, l2)-th sensor,gl1,l2, from f can be modeled as follows. First,
f l1,l2 is obtained. This image represents a blurred version of the
original high-resolution one, according to

f l1,l2 = Hl1,l2f , (3)

whereHl1,l2 is an(M1×M2)×(M1×M2) matrix and may have
different forms. In [12]hi

l has the form

hi
l(u) =

{
1
L

u = −(L− 1), . . . , 0
0 otherwise

. (4)

Note that in this case,h1
l1 = h2

l2,∀i, εi
l = 0, the normal-

ized horizontal and vertical displacement errors in Eq. (1) satisfy
εx
l1,l2 = εy

l1,l2 = 0 andHl1,l2 = H, ∀l1, l2 = 0, . . . , L− 1.
Let Dl1 andDl2 now be the 1-D downsampling matrices de-

fined by

Dl1 = IN1 ⊗ et
l , Dl2 = IN2 ⊗ et

l , (5)

whereINi is theNi×Ni identity matrix,el is theL×1 unit vector
whose nonzero element is in thel-th position, and⊗ denotes the
Kronecker product operator. Then for each sensor the discrete low-
resolution observed imagegl1,l2 can be written as

gl1,l2 = Dl1,l2Hl1,l2f + vl1,l2, (6)

where
Dl1,l2 = Dl1 ⊗Dl2, (7)

denotes the(N1×N2)×(M1×M2) 2D downsampling matrix and
vl1,l2 is modeled as independent white noise with varianceβ−1

l1,l2.
If Wl1,l2 denotes the(N1 ×N2)× (M1 ×M2) matrix

Wl1,l2 = Dl1,l2Hl1,l2, (8)

then we have

p(gl1,l2|f , βl1,l2) ∝
1

Z(βl1,l2)

× exp

[
−βl1,l2

2
‖ gl1,l2 −Wl1,l2f ‖2

]
, (9)

whereZ(βl1,l2) = (2π/βl1,l2)
(N1×N2)/2. We denote byg the

sum of the upsampled low resolution images, that is,

g =

L−1∑
u=0

L−1∑
v=0

Dt
u,vgu,v. (10)

Then

p(g|f , β) ∝ 1

Znoise(β)

× exp

[
−1

2

L−1∑
l1=0

L−1∑
l2=0

βl1,l2 ‖ gl1,l2 −Wl1,l2f ‖2

]
, (11)

whereβ = (βl1,l2 | (l1, l2) ∈ {0, . . . , L−1}2), andZnoise(β) =∏L−1
l1=0

∏L−1
l2=0 Z(βl1,l2).

4. BAYESIAN ANALYSIS

In this paper we follow the steps described below to estimate the
hyperparameters,α andβ, and the original image.

Step I: Estimation of the hyperparameters

α̂ and β̂ = (β̂l1,l2|(l1, l2) ∈ {0, . . . , L − 1}2) are first se-
lected as

α̂, β̂ = arg max
α,β

Lg(α, β) = arg max
α,β

log p(g|α, β), (12)

where

p(g|α, β) =

∫
f

p(f |α)p(g|f , β)df .

Step II: Estimation of the original image

Once the hyperparameters have been estimated, the estimation
of the original image,f(α̂,β̂), is selected as the image which mini-

mizes

α̂ ‖ Cf ‖2 +

L−1∑
l1=0

L−1∑
l2=0

β̂l1,l2 ‖ gl1,l2 −Wl1,l2f ‖2, (13)

so, we have

f(α̂,β̂) = Q
(
α̂, β̂

)−1
L−1∑
l1=0

L−1∑
l2=0

β̂l1,l2W
t
l1,l2gl1,l2, (14)

where

Q(α̂, β̂) = α̂CtC +

L−1∑
l1=0

L−1∑
l2=0

β̂l1,l2W
t
l1,l2Wl1,l2. (15)

Note that we are using maximum likelihood for estimating the
hyperparameter andmaximum a posteriori(MAP) for estimating
f . Furthermore, although steps I and II are separated, the iterative
scheme proposed next performs both estimations simultaneously.

The estimation process we are using could be performed within
the so called hierarchical Bayesian approach [13] by including hy-
perpriors on the unknown hyperparameterα̂ and hypervector̂β.
However, the possibility of incorporating additional knowledge on
them by means of gamma or other distributions will not be dis-
cussed here (see [13]).

Differentiating−2Lg(α, β) with respect toα andβ so as to
find the conditions satisfied at the maxima, we have

‖ Cf(α,β) ‖2 +tr[Q(α, β)−1CtC] =
M1 ×M2

α
, (16)

‖ gl1,l2 −Wl1,l2f(α,β) ‖2 +tr[Q(α, β)−1Wt
l1,l2Wl1,l2]

= N1×N2
βl1,l2

, for l1, l2 = 0, . . . , L− 1. (17)
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We will use the following algorithm for the estimation of the
hyperparameters and the high-resolution image

1. Chooseα0 andβ0.

2. Computef(α0,β0) using Eq. (14) witĥα = α0, β̂ = β0.

3. Repeat fork = 1, 2, . . .

i) Calculateαk andβk by substitutingαk−1 andβk−1

in the left hand side of Eqs. (16) and (17).

ii) Computef(αk,βk) by Eq. (14) withα̂ = αk, β̂ = βk.

until ‖ f(αk,βk) − f(αk−1,βk−1) ‖ is less than a prescribed
bound.

Note that if the same hyperparameter is used for certain low
resolution observations, Eqs. (16) and (17) become easier to cal-
culate.

Equations (16) and (17) can also be obtained with the EM-
algorithm [14] withX t = (f t,gt) andY = g = [0 I]tX to
iteratively increaseLg(α, β).

5. EXPERIMENTAL RESULTS

A number of simulations have been performed with the proposed
algorithm over a set of images. Here we present results on one
image. The criterion

‖ f(αk,βk) − f(αk−1,βk−1) ‖2

‖ f(αk−1,βk−1) ‖2
< 10−6

was used for terminating iterations. We setf0 = g, whereg has
been defined in Eq. (10), and the initial values of the hyperparam-
eters

1

α0
=

‖ Cf0 ‖2

M1 ×M2
,

1

β0
l1,l2

=
‖ gl1,l2 −Wl1,l2f

0 ‖2

N1 ×N2
,

for l1, l2 = 0, . . . , L− 1.
The performance of the restoration algorithms was evaluated

by measuring the SNR improvement,∆SNR = 10 × log10

[‖ f − g ‖2 / ‖ f − f̂ ‖2], wheref andf̂ are the original and esti-
mated high resolution images, respectively.

According to Eq. (6) the original image, shown in Fig. 1a, was
blurred using Eq. (4), to obtainu = Hf . Thenu was downsam-
pled withL1 = L2 = 4, thus obtaining 16 low resolution images,
ul1,l2(x, y) = u(L1x + l1, L2y + l2), x, y = 0, . . . , M1

4
− 1,

l1, l2 = 0, . . . , 3. Gaussian noise was added to each low reso-
lution image to obtain three sets of sixteen low resolution images
with 10, 20 and 30dB SNRs. The noise variances for each set of
images are shown in table 1. Figure 1b depicts the zero-order hold
upsampled imageg00 for 30dB SNR. The initial image,f0 = g,
for the 30dB set according to Eq. (10) is shown in Fig. 1c and the
estimated high-resolution one in Fig. 1d. Visual inspection shows
that the proposed method provides a substantial improvement.

Numerical results for the three sets of images with SNRs of
10, 20 and 30dB are summarized in table 2. It is clear that the pro-
posed method improves the SNR even in the case of severe noise

a) b)

c) d)

Fig. 1. a) Original256× 256 high-resolution image, b) zero-order
hold for the 30dB SNR observationg00, c) initial high resolution
image and d) estimated high resolution image.

although higher improvements are obtained as the noise decreases.
Each low resolution set of 16 observed images was bilinearly in-
terpolated to obtain a256 × 256 image. For all cases, the best
results using bilinear interpolation are only slightly better than the
initial image. Table 2 also shows the number of iterations needed
for the method to reach convergence according to the utilized crite-
rion. For all sets of images no more than 13 iterations were needed.
Each iteration took about 15.5 seconds on a Pentium IV 1700.

The estimated image model parameters for the 10, 20 and
30dB SNR sets of images wereα−1 = 217.44, 192.22 and200.30,
respectively. The estimated noise variances for the low resolution
images are presented in table 3. We conclude that the proposed
method produces accurate estimations of the low resolution image
variances for all SNRs.

6. CONCLUSIONS

A new method to estimate the unknown hyperparameters in a high
resolution image reconstruction problem has been proposed. Us-
ing BSC matrices all the matrix calculations involved in the hy-
perparameter mle can be performed in the Fourier domain. The
approach followed can be used to assign the same hyperparame-
ter to all low resolution image hyperparameters or to make them
image dependent. The proposed method has been validated exper-
imentally.
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Table 1. Noise variances for the low resolution image set with
SNR of 10dB, 20db and 30db.

σ2
l1,l2 0 1 2 3

10dB 0 163.19 161.62 162.53 161.63
1 163.11 162.27 163.54 161.37
2 163.19 163.45 161.66 161.34
3 163.11 162.18 162.31 161.82

20dB 0 14.79 14.75 14.73 14.72
1 14.89 14.70 14.85 14.72
2 14.81 14.81 14.71 14.70
3 14.84 14.74 14.85 14.69

30dB 0 1.47 1.46 1.46 1.46
1 1.47 1.46 1.47 1.46
2 1.47 1.47 1.46 1.46
3 1.47 1.46 1.46 1.46

Table 2. Summary of results for the three different low resolution
image sets.

Low resolution SNR (dB) 10 20 30
Bilin. interp. ∆SNR (dB) 0.52 0.24 0.21
Proposed alg.∆SNR (dB) 6.168 7.924 10.723

Iterations 4 13 13

Table 3. Estimated noise variances for the 10dB, 20dB and 30dB
SNR low resolution image sets.

β−1
l1,l2 0 1 2 3

10dB 0 166.35 160.12 158.04 160.00
1 160.06 160.98 162.36 160.71
2 157.46 160.58 162.98 156.90
3 164.79 165.44 155.55 160.97

20dB 0 15.71 15.07 14.27 14.43
1 15.13 14.84 14.49 14.72
2 14.88 14.89 14.44 13.96
3 15.53 15.52 13.92 14.35

30dB 0 1.53 1.48 1.38 1.40
1 1.47 1.46 1.36 1.38
2 1.46 1.41 1.39 1.35
3 1.51 1.54 1.28 1.34
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