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ABSTRACT section 4. Experimental results are described in section 5. Finally,

In this paper we consider the problem of reconstructing a high- section 6 concludes the paper.

resolution image from an incomplete set of undersampled, shifted,

degraded frames with subpixel displacement errors. We derive 2. PROBLEM FORMULATION

mathematical expressions for the calculation of the maxinaum

posteriori (MAP) estimate of the high resolution image given the Consider acamera sensor with x IV pixels and assume we have
low resolution observed images. We also examine the role played@ set ofl < g < L x L shifted images. Our aim is to reconstruct
by the prior model when an incomplete set of low resolution im- an M1 x Mx high resolution image with\/; = L x N; and

ages is used. Finally, the proposed method is tested on real and/2 = L x N2, from the set of low-resolution observed images.
synthetic images. The low resolution sensors are shifted with respect to each

other by a value proportional t8, /L x T>/L, whereT; x T»
is the size of each sensing element (note that if the sensors are
shifted by values proportional @6, x 7> orq < L x L the high-
rWsolution image reconstruction problem becomes singular). The
normalized horizontal and vertical displacements may be assumed
to be known (see [6, 7] for details) or unknown (see [8] for an
approach where the displacements are assumed unknown and are
estimated simultaneously with the high-resolution image).

Letg,, ;» be the(N1 x N2) x 1 observed low resolution image
acquired by thg(l1,12)-th sensor. Our goal is to reconstrutt
the (M1 x M2) x 1 high resolution image, from a set gflow
esolution imageg;; 2, With 1 < ¢ < L?. We will denote byZ,
he set of indices of the available low resolution images.

The process to obtain the observed low resolution image by
the (I1,12)-th sensorg;1,i2, from f can be modeled as follows.
First, /"' is obtained which represents a blurred version of the
original high-resolution one, according to

1. INTRODUCTION

Over the last two decades research has been devoted to the proble
of reconstructing a high-resolution image from multiple undersam-
pled, shifted, degraded frames with subpixel displacement errors
(see [1] for a review). Most of the reported work addresses the
problem of estimating al M x LN high resolution image from

at leastL x L low resolution images of siz& x N. Kimetal. [2]
explore the conditions the shifts of tHex L low resolution im-
ages have to satisfy in order to solve the high resolution problem,
at least from the least square perspective. Elad and Feuer [3] studyz
the same problem when combining Bayesian, Projection onto Con-
vex Sets and Maximum Likelihood methodologies on high resolu-
tion problems. Baker and Kanade [4] also examine the impact of
increasing the number of low resolution images, when proposing
an alternative approach to the super resolution problem. However,
not much work has been reported on the role played by the prior F02 H,, of 1
model when the system is incomplete, that is, when we have less e

thanL x L low resolution images or when the shifts do not satisfy \yhere Hy; ;» is an (M) x M) x (M; x M) integrating ma-
the conditions in [2] or [3]. trix that may have different forms. In this paper we usethn i

In this paper we use the general framework for frequency do- yepresenting a linear space-invariant blurring system with impulse
main multi-channel signal processing developed by Katsaggelosresponse

et al. in [5] (a formulation that was also obtained later by Bose

and Boo [6] for the high resolution problem) to tackle the high # u,v=—(L—-1),...,0

resolution problem from incomplete observations. With the use of ha iz (u, v) = { 0 otherwise @)
block-semi circulant matrices we show that all the matrix calcu-

lations involved in the MAP estimation can be performed in the Let nowD;; andD;; be the 1-D downsampling matrices de-

Fourier domain. We also examine how the prior model compen- fined by
sates for the lack of information in the incomplete observation set.

The rest of the paper is organized as follows. The problem for- D =1y, ®ej, Diz = Iy, ®ej, ©)
mulation is described in section 2. In section 3 the degradation and ) . . ) . )
image models used in the Bayesian paradigm are described. Th&vherely, is the N; x N; identity matrix,e; is the L x 1 unit
application of the Bayesian paradigm to calculate the MAP high vector whose nonzero elementis in {h position andv denotes

resolution image and estimate the hyperparameters is described i€ Kronecker product operator. Then for each sensor the discrete
low-resolution observed imagg, ;2 can be written as

*This work has been partially supported by the “CoimisNacional de
Ciencia y Tecnolo@” under contract TIC2000-1275. gi1,2 = DioHinof + 14100 = Wi iof + 1512, (4)
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whereD;; ;2 = D1 ® Dy, denotes thé N, x Na) x (M7 x M)
2D downsampling matrix angh;; ;2 is modeled as independent
white noise with variancel’l}lz.

We denote by the sum of the upsampled low resolution im-

ages, that is,
g= Y Di.gu.

u,ve€T

()

3. DEGRADATION AND IMAGE MODELS

From the model in Eq. (4), we have that the probability density
function of the(i1,[2)-th low resolution imageg;1,;2 with f the
‘true’ high resolution image is given by

1
Z(Bi1,12)

| gi1,2 — Wi iof ||

p(gi,i2|f, Bii,i2) o

B2

X oxp { ®)

WhereZ(ﬂll’u) = (271'/[3[1712)(1\]1)(1\72)/2.
Taking into account that we have multiple low resolution im-
ages, the probability af givenf is

1
pelf.8) = [ pleinelfBumn) < ———
(11,12)eT Znoise (D)
X exp Z Bz || g2 — Wi |1, (7)
(1,12)eT
Whereﬁ = (Bll,l2|(ll712) ) andZnozse( ) H(ll 12)ez

Z(B12)-
As prior model forf we use a simultaneous autoregression
(SAR), that is [9]
1 t it
exp{—iaf C'Cf},

p(fle) = 8)

_
Zp'rio'r(a)
where the parameter measures the smoothness of the ‘true’ im-
age, Zyrior(a) = (I1,; A5) /2 (2m /o) MM/ and \;; =

1 — 2¢(cos(2mwi/M) + cos(2mj/M2)), i = 1,2,..., M1, j =
1,2,..., M> andC is the Laplacian operator.

4. BAYESIAN ANALYSIS

The steps we follow in this paper to estimate the hyperparameters,

a andgB, and the original image are
Step I: Estimation of the hyperparameters
aandB = (Bi.i2|(11,12) € 7) are first selected as

&, = arg max Lg(a, §) = arg maxlog p(gla, B),  (9)

wherep(g|a, §) = (fla)p

Jep

Step II: Estimation of the original image

(glf, B)df

0 I

s=1N
6 =1l

a
Fig. 1. Original images: a) synthetic and b) real.

Once the hyperparameters have been estimated, the estimation
of the original imagef(dﬁ), is selected as the image which mini-

mizes

&l Cf |? Z Bz || gz — Wief |?, (10)
(11,12)eT
resulting in
fap =Q (d,@) Z BirizWi iagin iz, (11)
(1,12)ez

whereQ(& B) = aC!C + Do 2)er Biri2Wiy 1o Wiz,

It is important to note that the solutlon to Eq (9) is obtained
with the EM-algorithm witht* = (f*,g") andy = g = [0 I]*X
and that the calculations involved in findidg 6 andf , 5, can

be performed using the general framework for frequency domain
multi-channel signal processing developed in [5].

Let us now examine matri®Q(«, 5). We note that when fewer
thanL x L low resolution observations are available or when the
shifts in those low resolution images do not satisfy the conditions
in [2] and [3] this matrix can only be inverted and used in Eq. 11
because of the presence @f It is therefore important then to
examine the role played by the prior model in Eq. (8) and also
the accuracy of the estimated hyperparameters as a function of the
number of low resolution observations, This is done experimen-
tally, as described in detail in the next section.

5. EXPERIMENTAL RESULTS

A number of simulations have been performed with the proposed
algorithm over a set of images to evaluate its performance depend-
ing on the number of available low resolution images.

The performance of the proposed algorithm was evaluated by
measuring the peak signal-to-noise ratio (PSNR) defined as RPSNR
10 x log,o[M1 x Ma x 2552/ || £ — £ ||?], wheref andf are the
original and estimated high resolution images, respectively.

Results are presented on two different images; a synthetic im-
age with numbers and patterns, depicted in Fig.1a, and a real image
shown in Fig.1b.

Experimenti According to Eq. (4) the synthetic high reso-
lution image in Fig.1a was blurred using Eq. (2) obtaining=
Hf. Then the blurred high resolution image, was downsam-
pled with L = 4, thus obtaining a set of 16 low resolution images,
wi2(z,y) = w(lazx + 11, Loy + 12), z,y = 0,..., % -1,

11,12 = 0,...,3. Gaussian noise was added to each low resolu-
tion image to obtain three sets of sixteen low resolution images,
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Table 1. Noise variances for the synthetic low resolution image Table 2. Estimated noise variances for the synthetic low resolution
set with SNR of 40dB. image set with SNR of 40 dB.

Bila] O ] 1T [ 2 [ 3 1 i
0 | 040 040 0.39] 0.40 image | 0.61
1 0.39| 0.40| 0.39 | 0.40 4 Bl —T1 —1 —1
0,0 0,1 2,2 3,1
g 8:23 8:22 8:28 8:23 images| 0.31 | 1.47 | 1.72 | 4.02
- 8 |6, ] o 1 2 3
L1 1 images 0 0.86 | 0.92 | N/A | 0.60
— ”| 1= —— ||| . ne 1 N/A | N/A | 0.66 | 0.95
— = — "= 2 N/A | N/JA | 0.72 | N/A
=1l = %= =, %3 3 | NA | 1.82] 079 | N/A
=1l =i ] 16 ] 0 1 2 3
= I” e =1 ' — images| O 0.38] 0.37| 0.36 | 0.35
Eiil sn = 1 | 040|040 0.37 | 0.40
2 0.36 | 0.35| 0.35| 0.38
a b 3 0.38| 0.41| 0.37 | 0.38
0 |
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@
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3= gy UE 3= e E: Fig. 3. PSNR evolution with the number of low resolution images
4= Fu= WE 4= Fws N for synthetic image.
s=1 —0 s =1 _—
sz =5 &30 |||=\
proposed method provides a clear improvement even in the case
e f when severe noise is present although higher improvements are

obtained as the noise decreases. Note that the proposed algorithm
always outperforms bilinear interpolation even when only one im-
age is used (PSNR for the reconstructed image using just one low
resolution input image i$7.14dB (see Fig. 2c¢), and it increases
monotonically ta31.24dB with the number of images).

Experiment Il We also tested the proposed method on a real
image. The original image in Fig.1b was blurred and downsam-
pled as in the previous experiment and Gaussian noise was added
to each low resolution image to obtain three sets of sixteen low
resolution images with 10, 20 and 30dB SNR. Table 3 shows the
noise variances for the 20dB set.

The algorithm was run on each low resolution set using from
1 to 16 randomly chosen low resolution images. Figure 4b—d de-

Fig. 2. (a) zero order hold, (b) bilinear interpolation, (c)-(f) re-
sults with the proposed method using 1, 4, 8 and 16 low resolution
images.

gi1,12, With 20, 30 and 40dB SNR. The noise variances for the
40dB set of images are shown in Table 1.

In order to test the performance of the proposed algorithm we
ran it on different sets of randomly chosen low resolution im-
ages withl < ¢ < 16. Figure 2a depicts the zero-order hold up-
sampled image of o for 40dB SNR (PSNR=14.07dB), bilinear
interpolation ofgo,o is shown Fig. 2b (PSNR=15.62dB) and the
estimated high-resolution images using 1, 4, 8 and 16 low resolu-
tion images are depicted in Fig. 2c—f, respectively. Estimated noise
parameters@, using the proposed algorithm are shown in Table 2.
Examining the tablg we conclude that the proposed method Pro-Taple 3. Noise variances for the low resolution real image set with
duces accurate estimations for all the low resolution image NOISe g\ R of 20dB.
variances especially when the number of input images is high. Vi-

sual inspection shows that the proposed method outperforms zero B 0 1 2 3

. K . X 11,12
order hold and bilinear interpolation for all the studied cases and, 0 5455 | 24.611 24.62 | 24.74
as expected, produces better results as the number of input images 1 2464 | 2454 | 24.68| 24.62
increases. PSNR evolution against the number of low resolution 2 2459 | 2469 | 2456 | 24.76
input images is shown in Fig. 3. Numerical results show that the 3 2468 | 24.70| 24.62 | 24.60
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Table 4. Estimated noise variances for the low resolution real im-
age set with SNR of 20 dB.

1| Boo
image | 29.85

5 | Boo | Bio | Bis | Bas | Bas
images| 27.17 | 31.07 | 29.58 | 31.39 | 29.58

16 | 3% | O 1 2 3
images| 0 | 25.25| 25.30| 26.21 | 28.23
1 24.78 | 25.27 | 27.38 | 26.62
2 26.25| 26.35| 26.24 | 25.83
3 26.97 | 28.03 | 25.26 | 25.40

picts the resulting images for the 20dB SNR set using 1, 5 and
16 low resolution input images and the corresponding estimated
noise parameters are presented in table 4. Bilinear interpolation re-
sult for go,0, shown in Figure 4b with PSNR 20.61dB, is reported
for comparison purposes. Again, the proposed method provides
good reconstructions and accurate noise variance estimates even
when only one image is used. Note that using only 5 low resolu-
tion images the results are almost indistinguishable from the best
reconstruction (Figure 4d). This means that the prior model as-
sist in accurately recovering the high resolution image even when
we have little information and moderate to high noise. The method
clearly improves the PSNR as the number of low resolution images
increases, ass seen in Fig. 5. Note that most of the improvement
is achieved with a small number of images. The proposed iterative
algorithm typically needed 10 to 20 iterations to converge. Each
iteration took a maximum of 15.5 seconds on a Pentium 4 1700.

Fig. 4. (a) bilinear interpolation, (b)-(d) results with the proposed
method using 1, 5 and 16 low resolution images.

PSNR (dB)

6. CONCLUSIONS al

. . L 20
A new method to estimate a high resolution image has been pro- 12345678 0910111213141516

posed. Using block-semi circulant matrices all the matrix calcu- number of low resolution images

lations can be performed in the Fourier domain. The approach Fig. 5. PSNR evolution with the number of low resolution images
followed can be used with any number of low resolution images for real image

from 1 to L? since the prior model accurately recovers the high

resolution image even in the case where just one or very few in-

putimages are provided. The proposed method has been validated  to break them,”IEEE Transactions on Pattern Analysis and
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