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ABSTRACT

In this paper we consider the problem of reconstructing a high-
resolution image from an incomplete set of undersampled, shifted,
degraded frames with subpixel displacement errors. We derive
mathematical expressions for the calculation of the maximuma
posteriori (MAP) estimate of the high resolution image given the
low resolution observed images. We also examine the role played
by the prior model when an incomplete set of low resolution im-
ages is used. Finally, the proposed method is tested on real and
synthetic images.

1. INTRODUCTION

Over the last two decades research has been devoted to the problem
of reconstructing a high-resolution image from multiple undersam-
pled, shifted, degraded frames with subpixel displacement errors
(see [1] for a review). Most of the reported work addresses the
problem of estimating anLM × LN high resolution image from
at leastL×L low resolution images of sizeM×N . Kim et al. [2]
explore the conditions the shifts of theL × L low resolution im-
ages have to satisfy in order to solve the high resolution problem,
at least from the least square perspective. Elad and Feuer [3] study
the same problem when combining Bayesian, Projection onto Con-
vex Sets and Maximum Likelihood methodologies on high resolu-
tion problems. Baker and Kanade [4] also examine the impact of
increasing the number of low resolution images, when proposing
an alternative approach to the super resolution problem. However,
not much work has been reported on the role played by the prior
model when the system is incomplete, that is, when we have less
thanL×L low resolution images or when the shifts do not satisfy
the conditions in [2] or [3].

In this paper we use the general framework for frequency do-
main multi-channel signal processing developed by Katsaggelos
et al. in [5] (a formulation that was also obtained later by Bose
and Boo [6] for the high resolution problem) to tackle the high
resolution problem from incomplete observations. With the use of
block-semi circulant matrices we show that all the matrix calcu-
lations involved in the MAP estimation can be performed in the
Fourier domain. We also examine how the prior model compen-
sates for the lack of information in the incomplete observation set.

The rest of the paper is organized as follows. The problem for-
mulation is described in section 2. In section 3 the degradation and
image models used in the Bayesian paradigm are described. The
application of the Bayesian paradigm to calculate the MAP high
resolution image and estimate the hyperparameters is described in
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section 4. Experimental results are described in section 5. Finally,
section 6 concludes the paper.

2. PROBLEM FORMULATION

Consider a camera sensor withN1×N2 pixels and assume we have
a set of1 ≤ q ≤ L× L shifted images. Our aim is to reconstruct
an M1 × M2 high resolution image withM1 = L × N1 and
M2 = L×N2, from the set of low-resolution observed images.

The low resolution sensors are shifted with respect to each
other by a value proportional toT1/L × T2/L, whereT1 × T2

is the size of each sensing element (note that if the sensors are
shifted by values proportional toT1 × T2 or q < L× L the high-
resolution image reconstruction problem becomes singular). The
normalized horizontal and vertical displacements may be assumed
to be known (see [6, 7] for details) or unknown (see [8] for an
approach where the displacements are assumed unknown and are
estimated simultaneously with the high-resolution image).

Letgl1,l2 be the(N1×N2)×1 observed low resolution image
acquired by the(l1, l2)-th sensor. Our goal is to reconstructf ,
the (M1 × M2) × 1 high resolution image, from a set ofq low
resolution imagesgl1,l2, with 1 ≤ q ≤ L2. We will denote byI,
the set of indices of the available low resolution images.

The process to obtain the observed low resolution image by
the (l1, l2)-th sensor,gl1,l2, from f can be modeled as follows.
First, f l1,l2 is obtained which represents a blurred version of the
original high-resolution one, according to

f l1,l2 = Hl1,l2f , (1)

whereHl1,l2 is an (M1 × M2) × (M1 × M2) integrating ma-
trix that may have different forms. In this paper we use anHl1,l2

representing a linear space-invariant blurring system with impulse
response

hl1,l2(u, v) =

{
1

L2 u, v = −(L− 1), . . . , 0
0 otherwise

. (2)

Let nowDl1 andDl2 be the 1-D downsampling matrices de-
fined by

Dl1 = IN1 ⊗ et
l , Dl2 = IN2 ⊗ et

l , (3)

whereINi is theNi × Ni identity matrix,el is theL × 1 unit
vector whose nonzero element is in thel-th position and⊗ denotes
the Kronecker product operator. Then for each sensor the discrete
low-resolution observed imagegl1,l2 can be written as

gl1,l2 = Dl1,l2Hl1,l2f + nl1,l2 = Wl1,l2f + nl1,l2, (4)
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whereDl1,l2 = Dl1⊗Dl2, denotes the(N1×N2)× (M1×M2)
2D downsampling matrix andnl1,l2 is modeled as independent
white noise with varianceβ−1

l1,l2.
We denote byg the sum of the upsampled low resolution im-

ages, that is,

g =
∑

u,v∈I

Dt
u,vgu,v. (5)

3. DEGRADATION AND IMAGE MODELS

From the model in Eq. (4), we have that the probability density
function of the(l1, l2)-th low resolution imagegl1,l2 with f the
‘true’ high resolution image is given by

p(gl1,l2|f , βl1,l2) ∝
1

Z(βl1,l2)

× exp

[
−βl1,l2

2
‖ gl1,l2 −Wl1,l2f ‖2

]
, (6)

whereZ(βl1,l2) = (2π/βl1,l2)
(N1×N2)/2.

Taking into account that we have multiple low resolution im-
ages, the probability ofg givenf is

p(g|f , β) =
∏

(l1,l2)∈I

p(gl1,l2|f , βl1,l2) ∝
1

Znoise(β)

× exp

−1

2

∑
(l1,l2)∈I

βl1,l2 ‖ gl1,l2 −Wl1,l2f ‖2

 , (7)

whereβ = (βl1,l2|(l1, l2) ∈ I), andZnoise(β) =
∏

(l1,l2)∈I
Z(βl1,l2).

As prior model forf we use a simultaneous autoregression
(SAR), that is [9]

p(f |α) =
1

Zprior(α)
exp{−1

2
α f tCtCf}, (8)

where the parameterα measures the smoothness of the ‘true’ im-
age,Zprior(α) = (

∏
i,j λ2

ij)
−1/2(2π/α)(M1×M2)/2 andλij =

1 − 2φ(cos(2πi/M1) + cos(2πj/M2)), i = 1, 2, . . . , M1, j =
1, 2, . . . , M2 andC is the Laplacian operator.

4. BAYESIAN ANALYSIS

The steps we follow in this paper to estimate the hyperparameters,
α andβ, and the original image are

Step I: Estimation of the hyperparameters

α̂ andβ̂ = (β̂l1,l2|(l1, l2) ∈ I) are first selected as

α̂, β̂ = arg max
α,β

Lg(α, β) = arg max
α,β

log p(g|α, β), (9)

wherep(g|α, β) =
∫
f
p(f |α)p(g|f , β)df .

Step II: Estimation of the original image

a b

Fig. 1. Original images: a) synthetic and b) real.

Once the hyperparameters have been estimated, the estimation
of the original image,f(α̂,β̂), is selected as the image which mini-

mizes

α̂ ‖ Cf ‖2 +
∑

(l1,l2)∈I

β̂l1,l2 ‖ gl1,l2 −Wl1,l2f ‖2, (10)

resulting in

f(α̂,β̂) = Q
(
α̂, β̂

)−1 ∑
(l1,l2)∈I

β̂l1,l2W
t
l1,l2gl1,l2, (11)

whereQ(α̂, β̂) = α̂CtC +
∑

(l1,l2)∈I β̂l1,l2W
t
l1,l2Wl1,l2.

It is important to note that the solution to Eq. (9) is obtained
with the EM-algorithm withX t = (f t,gt) andY = g = [0 I]tX
and that the calculations involved in findinĝα, β̂ and f(α̂,β̂) can
be performed using the general framework for frequency domain
multi-channel signal processing developed in [5].

Let us now examine matrixQ(α, β). We note that when fewer
thanL × L low resolution observations are available or when the
shifts in those low resolution images do not satisfy the conditions
in [2] and [3] this matrix can only be inverted and used in Eq. 11
because of the presence ofC. It is therefore important then to
examine the role played by the prior model in Eq. (8) and also
the accuracy of the estimated hyperparameters as a function of the
number of low resolution observations,q. This is done experimen-
tally, as described in detail in the next section.

5. EXPERIMENTAL RESULTS

A number of simulations have been performed with the proposed
algorithm over a set of images to evaluate its performance depend-
ing on the number of available low resolution images.

The performance of the proposed algorithm was evaluated by
measuring the peak signal-to-noise ratio (PSNR) defined as PSNR=

10× log10[M1 ×M2 × 2552/ ‖ f − f̂ ‖2], wheref andf̂ are the
original and estimated high resolution images, respectively.

Results are presented on two different images; a synthetic im-
age with numbers and patterns, depicted in Fig.1a, and a real image
shown in Fig.1b.

Experiment I: According to Eq. (4) the synthetic high reso-
lution image in Fig.1a was blurred using Eq. (2) obtainingu =
Hf . Then the blurred high resolution image,u, was downsam-
pled withL = 4, thus obtaining a set of 16 low resolution images,
ul1,l2(x, y) = u(L1x + l1, L2y + l2), x, y = 0, . . . , M1

L
− 1,

l1, l2 = 0, . . . , 3. Gaussian noise was added to each low resolu-
tion image to obtain three sets of sixteen low resolution images,

III - 706

➡ ➡



Table 1. Noise variances for the synthetic low resolution image
set with SNR of 40dB.

β−1
l1,l2 0 1 2 3
0 0.40 0.40 0.39 0.40
1 0.39 0.40 0.39 0.40
2 0.38 0.39 0.39 0.38
3 0.39 0.41 0.39 0.40

a b

c d

e f

Fig. 2. (a) zero order hold, (b) bilinear interpolation, (c)-(f) re-
sults with the proposed method using 1, 4, 8 and 16 low resolution
images.

gl1,l2, with 20, 30 and 40dB SNR. The noise variances for the
40dB set of images are shown in Table 1.

In order to test the performance of the proposed algorithm we
ran it on different sets ofq randomly chosen low resolution im-
ages with1 ≤ q ≤ 16. Figure 2a depicts the zero-order hold up-
sampled image ofg0,0 for 40dB SNR (PSNR=14.07dB), bilinear
interpolation ofg0,0 is shown Fig. 2b (PSNR=15.62dB) and the
estimated high-resolution images using 1, 4, 8 and 16 low resolu-
tion images are depicted in Fig. 2c–f, respectively. Estimated noise
parameters,̂β, using the proposed algorithm are shown in Table 2.
Examining the table we conclude that the proposed method pro-
duces accurate estimations for all the low resolution image noise
variances especially when the number of input images is high. Vi-
sual inspection shows that the proposed method outperforms zero
order hold and bilinear interpolation for all the studied cases and,
as expected, produces better results as the number of input images
increases. PSNR evolution against the number of low resolution
input images is shown in Fig. 3. Numerical results show that the

Table 2. Estimated noise variances for the synthetic low resolution
image set with SNR of 40 dB.

1 β̂−1
0,0

image 0.61

4 β̂−1
0,0 β̂−1

0,1 β̂−1
2,2 β̂−1

3,1

images 0.31 1.47 1.72 4.02

8 β̂−1
l1,l2 0 1 2 3

images 0 0.86 0.92 N/A 0.60
1 N/A N/A 0.66 0.95
2 N/A N/A 0.72 N/A
3 N/A 1.82 0.79 N/A

16 β̂−1
l1,l2 0 1 2 3

images 0 0.38 0.37 0.36 0.35
1 0.40 0.40 0.37 0.40
2 0.36 0.35 0.35 0.38
3 0.38 0.41 0.37 0.38

14
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PS
N

R
 (

dB
)

number of low resolution images

20dB set
30dB set
40dB set

40dB g0,0 bilinear int.

Fig. 3. PSNR evolution with the number of low resolution images
for synthetic image.

proposed method provides a clear improvement even in the case
when severe noise is present although higher improvements are
obtained as the noise decreases. Note that the proposed algorithm
always outperforms bilinear interpolation even when only one im-
age is used (PSNR for the reconstructed image using just one low
resolution input image is17.14dB (see Fig. 2c), and it increases
monotonically to31.24dB with the number of images).

Experiment II: We also tested the proposed method on a real
image. The original image in Fig.1b was blurred and downsam-
pled as in the previous experiment and Gaussian noise was added
to each low resolution image to obtain three sets of sixteen low
resolution images with 10, 20 and 30dB SNR. Table 3 shows the
noise variances for the 20dB set.

The algorithm was run on each low resolution set using from
1 to 16 randomly chosen low resolution images. Figure 4b–d de-

Table 3. Noise variances for the low resolution real image set with
SNR of 20dB.

β−1
l1,l2 0 1 2 3
0 24.55 24.61 24.62 24.74
1 24.64 24.54 24.68 24.62
2 24.59 24.69 24.56 24.76
3 24.68 24.70 24.62 24.60
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Table 4. Estimated noise variances for the low resolution real im-
age set with SNR of 20 dB.

1 β̂−1
0,0

image 29.85

5 β̂−1
0,0 β̂−1

1,0 β̂−1
1,3 β̂−1

2,2 β̂−1
2,3

images 27.17 31.07 29.58 31.39 29.58

16 β̂−1
l1,l2 0 1 2 3

images 0 25.25 25.30 26.21 28.23
1 24.78 25.27 27.38 26.62
2 26.25 26.35 26.24 25.83
3 26.97 28.03 25.26 25.40

picts the resulting images for the 20dB SNR set using 1, 5 and
16 low resolution input images and the corresponding estimated
noise parameters are presented in table 4. Bilinear interpolation re-
sult forg0,0, shown in Figure 4b with PSNR 20.61dB, is reported
for comparison purposes. Again, the proposed method provides
good reconstructions and accurate noise variance estimates even
when only one image is used. Note that using only 5 low resolu-
tion images the results are almost indistinguishable from the best
reconstruction (Figure 4d). This means that the prior model as-
sist in accurately recovering the high resolution image even when
we have little information and moderate to high noise. The method
clearly improves the PSNR as the number of low resolution images
increases, ass seen in Fig. 5. Note that most of the improvement
is achieved with a small number of images. The proposed iterative
algorithm typically needed 10 to 20 iterations to converge. Each
iteration took a maximum of 15.5 seconds on a Pentium 4 1700.

6. CONCLUSIONS

A new method to estimate a high resolution image has been pro-
posed. Using block-semi circulant matrices all the matrix calcu-
lations can be performed in the Fourier domain. The approach
followed can be used with any number of low resolution images
from 1 to L2 since the prior model accurately recovers the high
resolution image even in the case where just one or very few in-
put images are provided. The proposed method has been validated
experimentally.
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