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ABSTRACT

The problem of classification is so fundamental that it has
been intensively investigated by many researchers from dif-
ferent domains. In this paper, we present a novel unsuper-
vised clustering algorithm derived from the techniques of
probabilistic modeling which is implemented by a stochas-
tic gradient algorithm. Then its application to challeng-
ing landcover classification based on Daedalus data of the
SMART project is explored by combining both spectral fea-
ture and spatial contextual information. Our first experi-
ments show its potential usefulness in remote sensing.

1. INTRODUCTION

The problem of classification is so fundamental in pattern
recognition that it has been intensively investigated by many
scientists and engineers from different domains such as com-
puter science, mathematical statistics, psychology, etc. As
a result, many classification algorithms have been devel-
oped from the different points of view of applications and
theories (see [1] and references therein). A lot of artifi-
cial vision tasks of different levels such as image segmen-
tation, image grouping and content based image retrieval
etc. can be directly or convertibly expressed as the prob-
lems of unsupervised and supervised methods of data clas-
sification. Since unsupervised clustering methods, unlike
their supervised counterparts, do not need an off-line la-
beling procedure for the selected training set which is ei-
ther time-consuming to implement or unstable to guarantee
the accuracy of labeling results, such methods have been
preferably explored in our case of landcover classification.
Recently, the so-called pairwise grouping techniques have
been largely investigated for the task of data classification
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[2, 3, 4] which can be described as: firstly, define the (dis)similarity

measure between data pairs which are the proper extracted
feature representation according to the application. Thus a
graph structure is obtained from an affinity matrix defined
on this measure and data pairs; then apply some grouping
criterion and optimization method among all the possible
clustering of all the elements which usually fall into linear
discrimination analysis. The global structures can be de-
tected by the dynamical behavior of the local pairwise in-
teraction.

In this paper, we will focus on the clustering method in
the same spirit as the previous mentioned approaches and
based on a novel optimization criterion from the techniques
of probabilistic modeling. Then we have applied this un-
supervised clustering algorithm to landcover classification
problem on Daedalus data. The optimization criterion and
corresponding clustering algorithm are given in section 2.
One of our contribution is that our method unifies both spec-
tral feature and spatial contextual information in the same
framework: Some implementation detail is given in section
3 for spectral feature and in section 4 for combining spatial
contextual information. Finally some preliminary landcover
classification results are shown in section 5 before the short
summary.

2. PROBABILISTIC MODEL AND CLUSTERING
ALGORITHM

For all the stochastic approaches (discrete models), we should
give some detail about probabilistic model which is applied
to the problems (landcover classification tasks in our case).
An image I is considered as the realization of an indepen-
dent sampling process from a given probability measure
on an abstract space X, in other word, the image I is defined
a family of iid r.v. I = (I;)1<i<1]-

Now, any partition C = (C1, - -- ,Ck) of I with cluster
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number K known a priori, is explained as the implementa-
tion of some image grouping process by a similarity crite-
rion associated to X'. More precisely, one class C,, in any
partition C' can be defined a sequence of Bernoulli variables
in X. L ifeec

. ITx € Cy
X = (X:c)weX - { —1 else

For any subset A of I, we can defined
Xa = inszAXm,

so that X 4 should be interpreted as a sign function taking
the value 1 when A is included in C,, and —1 otherwise.

Assume now we would like to label I into K disjoint
sets, or clusters, C' = (C1,- - - ,Ck) so that, in each cluster,
two elements of I are more likely to belong simultaneously
to the same cluster. In order to select a meaningful criterion,
we consider the following game: “Consider a given cluster-
ing C, choose uniformly in I a data indexed by 4, then se-
lect uniformly in the same cluster other than I; a new data
indexed by j. What is the probability that both data I; and
I; belong simultaneously to the same cluster or to its com-
plement ?”. From the previous game, we can define, for
each clustering C of I, a score Sy(C'), which is the com-
puted probability. This number is a performance index for a
clustering in grouping data according to a given probability
measure defined on Bernoulli variables (X ;) e x.

By direct computation, we get Sx(C) as following:

def 1 X
:NZ Z (XIi

More properties about S (C') can be found in [5] which
explores mainly its connection with the common K-means
algorithm. In our implementation of the unsupervised clus-
tering, we have adopted a hierarchical structure of binary
partition tree: recursively partition each node from root node
(which represents the whole data set) into two sub-clusters.
To make the algorithm more clear, we give some outline of
the computation procedure in each node of the current layer
in the tree:

1. Initialize the binary partition by random selection and
compute its initial Sy .

2. repartition the data set by flipping the cluster label of
arandom singleton k. If

sw = o Wi W W
[Col+1 |Ci] =1 |Co| [Ci
where Wi = 37, .c, Pij, W/ = Wi + sgn(k €
Ci) > Prji L € {0 1} is negative, then restore the
Kk’s Iabellng

3. iterate the previous step until Sy reaches maximiza-
tion.

The unsupervised clustering algorithm we have proposed
depends on: the joint probability distribution P(3, j) and the
layer number of the partition tree. The former can be from
the pairwise distances defined on I , which is feature ori-
ented; the latter decides the number of the final clustering:
in our experiment, we have always chosen K = 2P, p € N.
If in some case, K is chosen arbitrarily, then the binary tree
is firstly built with a number of leaves larger than but closer
to it, then the merging procedure is applied to the small-
est clusters. The total computation complexity is o(|I]?).
Therefore a compromise should be made between speed and
accuracy of the algorithm to deal with large dimension of
remote sensing images which is explained in the following
sections.

3. SPECTRAL FEATURE BASED
CLASSIFICATION

We have applied the clustering algorithm directly to the spec-

tral signature based classification on the multi-spectral Daedalus

data. That is, the partition has been done in the spectral sig-
nature space where each pixel I; is represented by a vec-
tor (I;1,---, I;z)T (L is the channel number). To calculate
the joint probability distribution, for the moment, we as-
sume that the different channels of data give independent
response. i.e.. P(i,j) = Hle P(Iy = Iy). Furthermore,
we assume that for each channel of data, the joint probabil-
ity is:
2

M) )

P(Izl = jl) = exp(— pn
l

where ¢, the standard deviation is estimated from the
available data set.

In order to overcome the huge computation on Daedalus
data of large size, the partition on the spectral signature
space is approximated by a small set of pixels (64*64) sam-
pling uniformly from I. Since the empirical distribution
based on the pixel set with such a size is well approximated
to the ideal one, we still maintain the validation of the par-
tition while reducing the dimension of computation.

Then for the most data not appearing in the sampling set,
they are labeled by a simple KNN decision rule, i.e., the la-
bel of each unknown pixel is appointed by the major voting
on the labels of its k (k=20 in our case) nearest neighbors.

4. SPATIAL FEATURE COMBINATION

In general, introducing the spatial-contextual information is
helpful to improve the accuracy of the classification[6, 7],
e.g., to reduce the noise interference. We have explored it
again in our unsupervised clustering framework.
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The first trial is to consider the joint probability P(i, j)

is the simple composition of two kinds of independent sources:

one still from the spectral signature denoted by P;;(4,5)
while the other comes from their relative spatial position
denoted by P, (i,). For Py (i, j) we have used the same
probabilistic model as P, (7, j). This kind of idea appears
in many energy based image segmentation techniques. How-
ever, within our clustering framework, the observed results
show that no matter how the parameter is tuned in Py (4, 5),
the classification result is always in the plate like form and
not satisfying. One explanation is that we have emphasized
the spatial factor too much.

The idea here is to give more factor for Py, (4,5) than
P,,(i,7). We have adopted a non-linear term as:

W(Zuj) = Pss(i;j)(l + Aldss(i,j)gth*Psp(iaj)) (3)

where X is some tuning parameter (A =1 in our case), dss (%, )
is a distance metric defined on the spectral signature space
and th* is a threshold option (the estimated standard devia-
tion is adopted in our case).

Now W (i, j) cannot be explained as some probability
distribution term and it seems that our general clustering
cannot be applied directly. However, the meaning of W (i, j)
is clear: the more reward is obtained from the spatial in-
formation besides from the spectral signature only if data
pair is not too dissimilar. In short, W (i, j) is explained as
a reward term combining both the spatial contextual infor-
mation and spectral signature quantity. If W (i, j) replaces
P(i,7) in Equ. 1, then Sx(C) is still a similarity criterion
based on W (i,j). There is no additional changement for
our clustering algorithm.

For the same reason to reduce the computation complex-
ity, we have firstly divided the whole image into small reg-
ular windows (32*32) before applying the clustering pro-
cess. As a result, a post-processing step is needed to merge
the clustering results into several large segmentation regions
depending on the statistics for the clusters. For the moment,
we have simply computed the empirical mean and standard
deviation for each clusters then applied the Lloyd’s version
of K-means algorithm [8] to agglomerate the clusters to the
given number of classes.

5. EXPERIMENT ON LANDCOVER
CLASSIFICATION OF DAEDALUS DATA

We have done some experiments of landcover classification
on the Daedalus data (12 channels from visible blue to ther-
mal infrared, its image of 4th channel is shown in Fig. 2(a))
at the test site Glinska Poljana, Croatia, which is crucial to
our project mission of minefield level 1 survey. Our data
collected from sensors cannot offer the information such as
the mine positions themselves as that in [9] which can be

used to generate directly the “danger” map. Therefore, in
our case, such a map will be produced mainly by change de-
tection results from the data of different time and the knowl-
edge of potential danger degrees for different ground truth:
i.e., the different status of the vegetation area (abandoned or
used), the boundary of the forest region, etc. Therefore, it
is interesting to know whether our clustering algorithm can
describe accurately our target classes, e.g. the forest region.

Here only the results of combining the spatial contextual
information are presented for the sake of space limit since
we have observed that they are always better than those us-
ing only spectral features. Fig.1 is the small size (512*512)
result of test site Glinska Poljana with class number K = 4.
We also display the corresponding ground truth map given
by Mrs. R. Pernar of CROMAC in Fig. 1(c) to validate the
output of our algorithm in Fig. 1(b). Although the ground
truth map gives more detail description (it has 19 classes),
the detection result by clustering algorithm gives more ac-
curate boundaries for our classes of interest, such as bushes
and vegetation regions.The classification result of the whole
test site with K = 8 is displayed in Fig.2(b). It should be
remarked that forest region has been enhanced largely due
to combining spatial contextual information, which is more
interesting to our target mission.

6. SUMMARY

We have introduced a new clustering algorithm derived from
the techniques of probabilistic modeling giving the intuitive
partition meaning. Furthermore, it can be flexibly extended
to a common framework embeding the spatial information.
The preliminary application to the landcover classification
shows its usefulness in the remote sensing domain. Our
current efforts are focused on both developing the methods
to extract the linear structures (road, river, railway, etc) in
our Daedalus data under the same probabilistic model and
comparing our result with those of other algorithms, e.g.,
MultiSpec®.
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