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ABSTRACT

We examine a new double-layered Markov Random Field
probabilistic framework for stereo matching and use Belief
Propagation for approximate inference. Our initial exper-
imental results are promising and future developments are
discussed.

1. INTRODUCTION

To address the problem of stereo matching [1], and inspired
by the region based methods [2], we propose a probabilistic
method that assumes two layers of MRFs (Markov Random
Fields): the pixel layer and the region layer. In the pixel
MREF layer, the disparity matching score of a given pixel is
defined via the MAP (Maximum of Posteriori) probability
of pixel disparity. Inthe region MRF layer, the hypothetical
region’s disparity plane parameter vector (a, b, ¢) is deter-
mined by the MAP probability of the parameter vector.
Further, instead of the non-causality of the traditional MRF,
we augment each MRF layer with some causal connections
to model stereo naturally. Exact solution for such com-
plicated loopy Markov network models is far from reach-
able. For both MRF layers, aBP (Belief Propagation) algo-
rithm [3] is used for approximate inference via MAP. The
BP agorithm has been theoretically [3] proved to converge
to the true means for such pairwise networks as MRF, with
successful results (e.g. [4]).

2. THE PROPOSED ALGORITHM

More formally, we model the stereo problem via a double-
layer MRF, under the following constraints.

e Segmentation constraint: Given over-segmentation[5]
of the reference view image (the left image), pixel
disparities are continuous (smooth) within each re-
gion and discontinues only exist between regions.

This project was funded by the Natural Sciences and Engineering Re-
search Council of Canada.

0-7803-7663-3/03/$17.00 ©2003 IEEE

I - 685

e Planar fitting constraint: The disparity map for each
region can be described via planar fitting ({a, b, ¢} tu-
ple) - by fitting d = ax + by + c to agiven set of pixel
coordinates {x,y}.

e Planar hypothesis space constraint: The space of pla-
nar parameters for a given region is limited to within
the clique of this region plus the region’s current pla-
nar parameter.

First, some notations. Let:
e z€{l,..,Z}isaregion z chosen from atotal Z;
e i, = i denotes pixel i which belongsto region z;

e 6, isa{a,b,c} tuplethat describesthe planar param-
eters for agiven region z. At the pixel level, we use
0.; = 0; for the planar parameter 6. that apply to
pixel i, = i;

e D, define the disparity map for region z; whiled; is
the disparity value for pixel i;

e Y, correspond to the observed matching difference
using the given disparity map for region z, while y;
is the matching difference value for pixel i;

e 0z denotes the cligue for region z, including all the
neighbouring regions of z; 97 means the clique for
pixel i, including al the neighbouring pixels of ;
0z \z further restricts the set by excluding region «
from the set; 97\ j hasthe similar interpretation.

2.1. The MRF for theregion layer

Based on the previous assumptions, we can now define the
region layer as a MRF augmented with causal connections
( see Fig. 1). Following this causal model we can easily
derive the following equations:

p(D. Y~|0:) :p(Yz|D:)p(Dz|0z) @)

Zy 2z
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Fig. 1. A 1-Dillustration of the region augmented MRF model. The grey
node denotes an observable variable while the white ones the unobservable
variables.

so the posterior probability for D ., givend, and Y’ is:
p(DzD/z;ez) = Cp(Dz;)/;|ez) (2)

where ¢ is a constant number and can be omitted.
Similarly, we have:

p(027DZ|0827YZ) :p(Dzw,z;Yz) P(9z|9az) (3)

and the posterior probability for 6 ., given the planar param-
eters of its neighbouring regions, D, andY, is:

p(0z|98z: D, Yz) = Cp(9z>Dz|98z= Yz)-

For simplicity, we assume that the hypothesis space for
planar parameters of region z islimited to the planar param-
eters (0. -) of its cliques where:

II »@-16.)

r€0zUz

and p(6.]6,) isfurther defined as:

p(az |032Uz) =

p(0:|0z zco-u:) = cexp {—1(d1 + dg)g/ Uzgnnbr}'

where rgn.,;,,. refer to the standard deviation for neighbor-
ing regions. Also, for z's neighbouring region z, [ repre-
sents the border length between ¢ and z, d; and d, are the
distances between the segment center and the depth planes,
for region z and x, respectively. Theterm d; + d» describes
the depth discontinuity between the two regions (see [6] for
details).

As a consequence the posterior likelihood for 6 , can be
simplified as:

p(ezw@z: D, Y:z) X p(Dz|9z> Yz)p(9z|98zw)-

Using the Belief Propagation(BP) algorithm, the MAP
principle (max-product) for the region layer becomes (refer
toEq. 1-5in [4] for detailed explanation):

Planarid | regionl1(i.e. ;) region2 (z3)
1 61 02
2 02 0,
3 03 03
4 04 05
5 05 O¢
6 b7

Table 1. Shows the hypotheses for regions labeled 1 and 2 in Fig. 2,
defined by the parameters (6;) of the possible clique neighbours.

0% = arg Iréax{ema;é p(8,D|Y)}. (4)

s LFZ

For this MRF layer the joint probability over the region dis-
parity D and the region planar parameters 6 can be written
as[4]:

p0, DY) =TI »0:16.) [[p(Dyl6,.Y,)

r€ozUz Y

By substitution into Eq. 4, we obtain the MAP estima-
tion at node z:

07 = argmax{p(D:|0:,Y>) I m:6y
* €0z

where z runs over all region nodes neighbouring of node z.
m?(6,) isthe message flow from node z to node z, defined

by:

m

w8

(6:) = max{p(Da[6,,Y2) [[ mi02)}.  (©

yedz\z

This message passing schemeissimply illustrated in Fig. 2.

Fig. 2. An example of message passing in the region
MRF layer. The message from site 2 to 1 is m% =
maxe, p(0z, |02,)p(y2|0z, )mSmImims.  Also refer to Table. 1
for the related hypothesis space of site 1 and 2.
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2.2. The MRF for the pixel layer

Figure 3 shows the proposed transition from the region
MREF layer to the pixel MRF layer. Similar to the previ-
ous section, we derive the following eguations according to

Fig. 3.

o) = (3, (4) (0,

Fig. 3. 1-D illustration of the pixel augmented MRF model, and the
transition from the region MRF layer to the pixel MRF layer.

p(dilyi, 0, doi) = ¢ * p(yildi) p(dildoi,8;)
and the MAP principlefor the pixel layer is:
d; = argmax{p yild;) H m d;)} (7)
jEDi

where j runs over al pixels neighbouring pixel i, m{ (d;)is
the message flow from pixel j to pixel 7 defined by:

) 1T mi@)). @

keoj\i

mf (d;) = cmax{p(d |d;)p

(y;ld;)

The resultant belief function (b) becomes

bi(di) = p(yildi) T] ml(dy). 9)

jedi

2.3. Combining the pixel and region MRF layers

We can establish the following equations by assuming iid
distribution for pixels within the current region z obtaining
(seeFig. 3):

e The likelihood of the observed intensity differences
given the disparities:

p(Y.|D.)

= I plyild:)

i€ER.

(10)

e Thelikelihood of the disparities given the underlying
planar parameters for regions:

II

i€ER.,0i€ER,

p(DZ|91) = p(di|d6ia0i) (11)

Here, the pixel likelihood (the dataterm) is defined by:
(i — ity

p(yildi) = exp{— 207

}

wherei € D,; ref defines a pixel from the reference view
and mat a pixel from the second view; y;4, indicates the
matching pixel in the second view located using 7 and d;
from the reference view - under the epipolar constraint; o y

is the standard deviation for observation likelihood.
Also the pixel prior term (the smoothnessterm) is:

ZieDZ ,jeai(dj -
202D

d;)?
p(d;|ds;, 0 )

i) = exp{— }
wherei € D.; op isthe standard deviation for disparity.

To combine such evidence with the region layer evi-
dence, we now combine Eq. 1, 2, 10, 11 and Eqg. 9 together,
as.

p(D.16:,Y) =[] p(wild) [ p(dildoi,6:X12)
iER. 0iER.
= ] bilds) (13)
ieR.

According to Eq. 5, 6, the MAP principle for the region
6 estimation could be rewritten as

62 = argmax{ [ bi(d;) [[m? (6

*  i€R.

(14)

Meanwhile the message is:

= max{ H bi(di)p(0:|02,cco202) H mf(6z)}.
i€ER. yedz\z
(15
Dueto thefact that the numerical result of [[;. 5 bi(d;)

isintractableit is very difficult to compute Eq. 13, 14, 15,
directly. So we approximateit as:

(D16 > icr. logbi(d;)
z zZy n

Y.) = exp{ } (16)

where n counts the number of pixelsin the current region.
Thisway, the rulesin Eg. 14 and 15 become:

0 = arg max b.(6.) 17)
and
mf(ez) = Héax{bﬁzp(azwLwEBzUz) H mg(e )}
¢ y€dx\z
(18)
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3. FLOWCHART OF THE ALGORITHM

The resultant flowchart of the algorithmis as follows:

1. Perform over-segmentation of thereferenceview; Here

we use the Mean-Shift procedure[5].

2. At the pixel layer update the pixel disparity estima-
tion using the BP algorithm under the MAP principle
(Eq. 7, 8) for each region - loop until the messages
converge.

3. According to the current pixel level disparity estima-
tion, run the plane fitting (we use the Normal Equa-
tion for planefitting [2]) to update the planar param-
etersfor the region layer - repeat until converge.

4. At theregion layer update the regional disparity esti-
mation using the BP algorithm under the MAP prin-
ciple (Eq. 14, 15).

4. EXPERIMENTS

We have experimented with the proposed algorithm with
many standard stereo pairs. In Fig. 4, two set of results
are shown. The top two rows are for @ Map' image and
the remaining two rows are’Lamp and Head’ images. For
the Map images, in scan line order, there are: the reference
(Ieft) view image, the disparity map obtained after Belief
Propagation at the pixel MRF layer, the disparity map &f-
ter the consecutive BP running on the region MRF layer,
and finally, the obtained confidence map. The last two rows
follow the same set of configuration. These results are com-
parable with recent methods [6, 1]. Note that besides the
plane-fitted disparity map, this algorithm also outputs the
confidence map which measures, for each pixel, the confi-
dence of choosing the current disparity value. The confi-
dencefor pixel i is computed as:

b; + A

confidencei = m

where )\ is a constant, and b; is the approximated marginal
probability for pixel i obtained after the Belief Propagation
(white =1, black = 0).

5. CONTRIBUTION AND FUTURE WORK

We proposeanew probabilistic framework for stereo match-
ing, and use Belief Propagation for approximate inference.
Good results are obtained using the proposed agorithm.
However, in some cases, the image segmentation results

may not be consi stent with the corresponding disparity changes.

We plan to address this problem in the future work.

Fig. 4. Some results of our stereo algorithm (See text for details).
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