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ABSTRACT

Histogram-based image retrieval requires some form of quan-
tization since the raw color images result in large dimen-
sionality in the histogram representation. Simple uniform
quantization disregards the spatial information among pix-
els in making histograms. Since traditional vector quanti-
zation (VQ) with squared-error distortion employs only the
first moment, it neglects the relationship among vectors. We
propose Gauss mixture vector quantization (GMVQ) as the
quantization method for a histogram-based image retrieval
to capture the spatial information in the image via the Gaus-
sian covariance structure. Two common histogram distance
measures are used to evaluate the similarity of histograms
resulting from GMVQ. Our result shows that GMVQ with
a quadratic discriminant analysis (QDA) distortion outper-
forms the two typical quantization methods in the histogram-
based image retrieval.

1. INTRODUCTION

Despite the importance of quantization, only a few quanti-
zation methods have been considered in most papers deal-
ing with histogram-based image retrieval[1][2]. One simple
but popular method is uniform quantization of each color
channel for every pixel, which has the defect of ignoring
the interdependency among pixels. As a result, there have
been various attempts to unify the color and the spatial in-
formation. In most cases, this has caused an increase in the
complexity of comparison at querying time, an important
factor in image retrieval.

Some authors[2] have suggested the use of the VQ ap-
proach represented by the generalized Lloyd algorithm[3].
Since VQ is an asymmetric compression scheme, its struc-
ture is suitable for image retrieval application requiring much
faster comparison time than the calculation time of the fea-
tures. Nevertheless, the Lloyd algorithm with mean squared
error(MSE) as a distortion measure has a limitation in using
the histogram of labels as a feature representation. Because
the simple Lloyd algorithm uses only the first moment in its
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calculation, it cannot make full use of the spatial relation-
ship among the blocks of pixels.

Recently, a collection of works dealing with a VQ us-
ing a Gauss mixture model have been developed. A GMVQ
using a minimum discrimination information (MDI) distor-
tion measure was introduced in [4] to motivate the use of a
Gauss mixture model in robust compression systems. It was
then further investigated in [5], with an emphasis on image
compression and classification. Gray et al.[6] also demon-
strated the potential for GMVQ using the MDI distortion
for applications to image retrieval, classifying images with
a simple decision tree.

In our work, we use the log-likelihood considered in [5]
[6] as the distortion measure for GMVQ design in HSV
color space. We use two well-known histogram distance
measures to compare GMVQ with two other quantization
methods. Since GMVQ exploits not only the mean vectors
but also the covariance matrices, it incorporates the spatial
characteristics of the images into the histogram better than
the other quantization methods.

2. GAUSS MIXTURE VECTOR QUANTIZATION

2.1. Gauss Mixture Model

Although Gaussian densities have been popular for density
estimation of texture images, they are not general enough
to capture the multi-modal characteristics of generic color
images. Thus, Gauss mixtures have been emerging as an
effective density model of generic color images, for they
can represent the multi-modalities.

A finite Gauss mixture model is a probability density of
the following form:

f(x) =
L

∑

i=1

pigi(x) (1)

where x represents a k-dimensional random vector, L is the
number of the Gaussian components, and pi represents the
probability of the ith Gaussian component. The density
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gi(x) is the pdf of the ith Gaussian component.

gi(x) =
1

(2π)
k

2 |Ki|
1
2

e−
1
2 (x−mi)

tK−1
i

(x−mi) (2)

where the mi is the mean vector and Ki is a nonsingular
covariance matrix.

2.2. Lloyd algorithm for a Gauss mixture model

In order to vector quantize an image, we first need to find
a codebook using the training set of images. For a GMVQ,
we have to obtain the covariance matrices, the probabilities,
and the mean vectors of each cell. The steps of the Lloyd
algorithm for the Gauss mixture source are as follows.
• Step 1: Set the iteration number m = 0, the distortion
D(0) = 0 and the threshold ε. Start with an initial set of
Gaussian components {gi}(0) with i = 1, 2, · · · , L and a
set of training vectors {xn}, with n = 1, 2, · · · , N , where
L is the number of the Gaussian components making up of
the Gauss mixture. N is the number of the training vectors.
• Step 2: Find the cells {Zi}(m) that satisfy

{Zi}(m) = {xn : ρ(xn, gi, pi)(m) ≤ ρ(xn, gj , pj)(m), ∀j 6= i}
(3)

where j = 1, 2, · · · , L. The ρ(xn, gi, pi)(m) is the La-
grangian distortion function given by

ρ(xn, gi, pi)(m) = {dLL(xn, gi) + λ ln
1

pi

}(m) (4)

The left term is the LL distortion between a training vector
and a Gaussian component.

dLL(xn, gi) = − ln
1

(2π)
k

2 |Ki|
1
2

e−
1
2 (x−mi)

tK−1
i

(x−mi)

=
1

2

(

k ln(2π) + ln |Ki| + (x − mi)
tK−1

i
(x − mi)

)

(5)

The right term of (4)represents the number of bits required
by a noiseless code to specify i to the decoder, where λ is the
Lagrangian multiplier and k is the dimension of a training
vector. pi is the probability that the training vector xn is
encoded to the Gaussian component gi.
• Step 3: Compute the total distortion D(m) between the
training vectors and the corresponding Gaussian components:

D(m) =

L
∑

i=1

∑

n:xn∈{Zi}(m)

ρ(xn, gi, pi)(m) (6)

• Step 4: If
∣

∣

∣

D(m)−D(m−1)

D(m)

∣

∣

∣
< ε, stop the process. Other-

wise, continue.
• Step 5: Find the new values of the mean vectors, the co-
variance matrices and the probabilities used to define the
Lagrangian distortion function.

pi(m+1) =
Ni(m)

N
(7)
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(a) Labelled maps (b) Histogram of the labels

Fig. 1. Generation of histogram for MSE VQ and GMVQ

{mi}(m+1) =
1

Ni(m)

∑

n:xn∈{Zi}(m)

xn (8)

{Ki}(m+1) =
1

Ni(m)

∑

n:xn∈{Zi}(m)

(xn−mi(m))(xn−mi(m))
t

(9)
where Ni(m) is the number of the training vectors in the cell
Zi(m). Then, go to the Step 2 with m = m + 1.

2.3. Quantizer for the Gauss mixture model

Once the Gaussian components and the related probabilities
are obtained through the steps in the previous section, the
vector quantizer maps an input vector into an index(label)
of the closest Gaussian component. The distortion measure
used in encoding can be the MSE for the image compres-
sion purpose as in [5]. However, for image retrieval, the
same LL distortion is required in the encoding step for bet-
ter discrimination between images.

3. GENERATION OF THE HISTOGRAMS

Generation of the histograms of color images in the SQ case
is simple. All we have to do is to count number of pixels that
correspond to a specific color in uniformly quantized color
space, whether it is RGB color space or HSV color space.
One histogram bin corresponds to one color in the quantized
color space.

In the cases of the MSE VQ (VQ using MSE as a distor-
tion measure) and the GMVQ, the histogram of the labels
representing the Gaussian components is generated instead
of the quantized pixel colors. In Fig. 1 (a), we can regard
each label as a piece of information having the spatial vari-
ation of a color channel within a group of pixels. A combi-
nation of three labels representing a vector in the HSV color
space constitutes one histogram bin as in Fig. 1 (b).

4. HISTOGRAM DISTANCES

There are several distance measures commonly used for find-
ing the similarity between two color histograms [1]. We
consider two famous histogram distance measures. Let H1

and H2 represent two color histograms of the query image
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and of an image in a database (DB), respectively. The Eu-
clidean distance between H1 and H2 can be computed as

dHE(H1, H2) =

√

∑

X,Y,Z

(H1(x, y, z) − H2(x, y, z))2 (10)

where X , Y and Z are the gamuts of the discretized color
channels. This distance is the L2-norm.

The histogram intersection was proposed for color im-
age retrieval in [7]. It was originally given by

IH(H1, H2) =

∑

X,Y,Z
min(H1(x, y, z), H2(x, y, z))
∑

X,Y,Z
H2(x, y, z)

(11)

where H1 is the histogram of a query image and H2 is the
histogram of an image in the DB. If the sizes of the his-
tograms of the query image and the image in the DB are the
same, the histogram intersection becomes equivalent to the
L1-norm[7].

Smith et al.[1] extended the definition to the case when
the sizes of the two histograms are different, modifying the
denominator of the original definition slightly as follows:

IH(H1, H2) =

∑

X,Y,Z
min[H1(x, y, z), H2(x, y, z)]

min[
∑

X,Y,Z
H1(x, y, z),

∑

X,Y,Z
H2(x, y, z)]

(12)
Finally, the histogram intersection distance is defined as,

dHI(H1, H2) = 1 − IH(H1, H2) (13)

where IH(H1, H2) = 1 when H1 = H2.

5. IMPLEMENTATION

The image DB used in this work contains generic images
having both color and texture characteristics. It is the same
as the DB exploited in [8]. The DB consists of 1000 color
JPEG images whose size is either 384 × 256 or 256 × 384.
It is a subset of the well-known Corel DB and has 10 classes
with 100 images each. To reduce the computation time of
the repeated experiment, the central region (256 × 256) of
every image in the original DBs is selected and scaled to a
128 × 128 JPEG image.

In our image retrieval system, if a user selects a query
image and a quantization method, the system returns sev-
eral candidate images in order of similarity measured by a
histogram distance between the histogram of the query im-
age and the histogram of every image in the DB. We used
uniform quantization for scalar quantization (SQ) as in [1].
The Lloyd algorithm using MSE was employed for VQ as
in [2]. All procedures are realized using MATLAB.

In the case of SQ, the hue is quantized to 16 levels, the
saturation to 4 levels, and the value to 4 levels for every
pixel, for the hue is known to be most important in the HSV
color model. In the MSE VQ case, a training set is used in

generating a codebook. Here the training set consists of 16
images chosen from 1000 DB images. One or two images
were taken from each of the 10 classes. The number 16
was selected from the simple performance comparison with
other numbers of training images(10, 64 and 100) in the
MSE sense. The codebooks for the three color channels
in the HSV color space are designed separately in the way
described in [3]. The dimension of a vector was determined
to be 4 (2 × 2 square pixels) since the size of the images is
only 128×128. In order to be equivalent to the SQ case, the
sizes of the codebooks for the H,S, and V color channels are
chosen as 16, 4, and 4, respectively. All images in the DB
are then encoded with the codebooks. As a result, we get the
labelled maps for the HSV color channels as in Fig. 1 (a),
where each label represents a codeword with the dimension
of 4.

Gaussian components for each color channel are calcu-
lated from the training set for the density estimation of the
GMVQ. We set the number of the Gaussian components for
each H, S, and V color channel to 16, 4 and 4 so that all three
quantization methods can generate the same 256 histogram
bins. The same vector dimension of 4 as for the MSE VQ
was used. In order to get labelled maps, the encoding was
done based on the Lagrangian distortion function between
the input vectors and the Gaussian components. The La-
grangian multiplier λ was chosen as 1 since it gave the best
visual quality of the encoded images among the values of
λ = 0, 1, 10, 100, 1000.

After generating the histograms according to the section
3, we used two metrics to measure the retrieval effectiveness
of an image retrieval system: one is recall and the other is
precision[1]. In general, the precision and recall are used
together in a graph so that they can show the change of the
precision values according to the recall values. Since the
precision drops typically as the recall increases, an image
retrieval system is said to be more effective if the precision
values are higher at the same recall values.

6. RESULTS

Fig. 2 shows the results of our work. Together with the re-
trieval performance using GMVQ, results for the other two
quantization methods are displayed. It is the average of
1000 precision vs.recall graphs when all images in the DB
are used as the query images alternately. The retrieval per-
formance using GMVQ is the best among the performances
using the three color quantization methods, based on both
histogram distance measures. Considering the same num-
ber of histogram bins are used, we got a significant amount
of improvement in retrieval performance using GMVQ. We
can also observe that the performance of image retrieval us-
ing GMVQ is less dependent on the particular histogram
distance measure used since the performance gap between
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Fig. 2. Overall retrieval performances

the two histogram distances is much less than the other two
quantization methods. There is little difference in retrieval
performance between the MSE VQ and SQ in Fig. 2. Be-
cause MSE VQ does not use the covariance information
between two vectors in generating the codebook or in en-
coding the images, it does not estimate the unforseen data
accurately. Thus, it cannot overcome the decrease of the
cardinality of histogram caused by using the vectors instead
of the pixels, resulting in the similar performance to the SQ.

Regarding the retrieval complexity, SQ is the simplest in
quantizing the query image, but it takes the longest time to
calculate the histogram of all quantized pixel values. The
MSE VQ and the GMVQ are complex in quantizing the
query image1, but they need much less time to calculate
the histogram of the labels. In consequence, there is only
a small difference in the complexity of generating the his-
togram of the query image among the three quantization
methods at querying time. Moreover, the comparison com-
plexity is smaller as long as the same histogram distance
is employed since the three quantization methods use the
same number of histogram bins. Therefore, in our experi-
ment, the three quantization methods resulted in almost the
same response time for a query image. In our retrieval sys-
tem, the average response times for 5 arbitrary query images
were 1.6846, 1.6862, 1.7008, 1.7042, 1.6828, and 1.6862
seconds from top to bottom in the legend of Fig. 2.

7. CONCLUDING REMARKS

We studied a new quantization method for histogram-based
image retrieval, reflecting the spatial relationship on the la-
bels of the histogram. GMVQ proved to be superior to other
quantization methods in histogram-based image retrieval.

1The GMVQ is more complex than the MSE VQ, but the computational
time difference between them is negligible for a query image in comparison
with the entire retrieval time

We also observed that the GMVQ is less dependent on the
different histogram-comparison measures than other quan-
tization methods. Using a GMVQ, we yielded improvement
in the retrieval performance for the same number of the his-
togram bins. We also reduced the possible range of each
histogram value by log2 k bits, where k is the vector dimen-
sion assumed to be a power of 2. The approach may be
useful for implementing multimedia standards such as the
MPEG-7[9], which defines a “Histogram Descriptor.”

8. REFERENCES

[1] J. R. Smith and S. F. Chang, “Tools and techniques
for color image retrieval,” in IST/SPIE - Storage Re-
trieval for Image and Video Databases IV, San Jose,
CA, February 1996, vol. 2670, pp. 426–437.

[2] F. M. Idris and S. Panchanathan, “Image and video in-
dexing using vector quantization,” Machine Vision and
Applications, vol. 10, no. 2, pp. 43–50, 1997.

[3] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for
vector quantization design,” IEEE Trans. on Communi-
cations, vol. 28, no. 1, pp. 84–95, January 1980.

[4] R. M. Gray, “Gauss mixture vector quantization,” in
Proceedings of IEEE ICASSP, Salt Lake City, Utah,
May 2001, vol. 3, pp. 1769–1772.

[5] A. K. Aiyer, Robust Image Compression Using Gauss
Mixture Models, Phd thesis, Stanford University, Au-
gust 2001.

[6] R. M. Gray, J. C. Young, and A. K. Aiyer, “Mini-
mum discrimination information clustering: modeling
and quantization with Gauss mixtures,” in Proceedings
2001 IEEE ICIP, Thessaloniki, Greece, October 2001,
vol. 2, pp. 14–17.

[7] M. Swain and D. Ballard, “Color indexing,” Interna-
tional Journal of Computer Vision, vol. 7, no. 1, pp.
11–32, 1991.

[8] J. Li, J. Z. Wang, and G. Wiederhold, “IRM:integrated
region matching for image retrieval,” in Proceedings
of the 2000 ACM Multimedia Conference, Los Angeles,
CA, October 2000, pp. 147–156.

[9] ISO/IEC, Sydney, Australia, MPEG-7 Requirements
Document V.15, iso/iec jtc1/sc29/wg11/n4317 edition,
July 2001.

III - 680

➡ ➠


