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ABSTRACT

In this paper, a much more accurate classification scheme
is proposed for structure tensor-based optical flow estima-
tion to address the difficulties of interpreting the motion
field discontinuities. The key novelties of this approach
are: (1) scale-adaptive spatio-temporal filter, (2) weighted
structure tensor, and (3) confidence measurements. Mul-
tiple motions of moving objects are matched by utilizing
spatio-temporal Gaussian filter with adaptive scale selec-
tion, which is steered by the condition number. To capture
the neighborhood structure of local discontinuities, weight-
ing the structure tensors is attempted. A new normaliza-
tion function is exploited to facilitate accurate thresholding
for confidence measurements. Experimental results demon-
strate that these three novelties together effectively con-
tribute much improved performance on motion field discon-
tinuity classification compared with that of existing meth-
ods.

1. INTRODUCTION

Optical flow provides an estimation of 2D representation
of apparent wvelocities based on the pixel intensity values
across a group of adjacent frames [1]. Recently, new opti-
cal flow computation schemes, such as tensor-based method
[3], were proposed based on the total least squares (TLS)
approach. Tensor-based method is implemented by con-
structing 3D structure tensor and performing eigen-space
analysis. Motion vectors are then estimated according to
the thresholding of eigenvalues that also provides the confi-
dence measurements on the discontinuities of motion field.

The optical flow estimation is normally accurate on large,
textured areas with uniform motion. For the pixels at the
non-coherent spatial areas that involves different motions
or very small moving areas, it is difficult to obtain accu-
rate motion vectors due to motion discontinuities. To ad-
dress this issue, in [2], the geometry of the hypersurface was
used for motion detection based on the gradient of hyper-
surface for tracking moving patterns and detecting motion
discontinuities. The discontinuity interpretation based on
38D structure tensor method has also been investigated in
[3][4][5], which will be discussed in Section 3.4.1. However,
the results obtained from these methods left room for fur-
ther improvement.

In this paper, a new approach to classify the motion
field through scale-adaptive filtering and eigen-space analy-
sis is developed. In our method, adaptive scale selection
steered by the condition number is implemented for the
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spatio-temporal filter to match different motions of mov-
ing objects. The weighted structure tensor is proposed to
capture more neighborhood relationship of the local pixels
than the conventional structure tensor. By exploiting new
normalization function for the local eigenvalues analysis,
each motion vector is classified into one of four categories:
spatial homogenous region, edge, corner and optical flow
discontinuity.

The paper is outlined as follows. Section 2 introduces
the basics of the 3D structure tensor. Section 3 describes
the proposed scheme for indicating motion field discontinu-
ities. Experimental results of our method and their com-
parison with other approaches are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2. 3D STRUCTURE TENSOR

The 8D structure tensor is an effective representation of the
local orientation for video object motion [3]. The image se-
quence I(x) is treated as a volume data where x = (x,y,1)7,
z and y are the spatial components, and ¢ is the temporal
component. The 3D structure tensor can be generated by:

Juii Jiz Jis
J(z,y,t) = |Jor Joo Jas| = h(z,y,t)* (VI-VIT)
Js1 Jza  Js3

=h(z,y,t) * LI, I} I,0.|,
LI, I, I}
(1)

where V := (0;,0y,0:) denotes the spatio-temporal gra-
dients, h(z,y,t) is the spatio-temporal filter, and operator
“x” performs the convolution. The eigenvalue analysis of
the structure tensor corresponds to a total least-squares
fitting of a local constant displacement of image intensi-
ties [3]. After performing eigenvalue decomposition of the
3 x 3 symmetric positive matrix J(z,y,t), the eigenvectors
of J(x,y,t) give the dominant local orientations. The corre-
sponding eigenvalues denote the local grayvalue variations
along these directions, which can be used as the confidence
measurement for optical flow estimation.

3. PROPOSED CLASSIFICATION SCHEME
To facilitate the accurate tensor-based optical flow estima-

tion and segmentation, a new classification scheme is pro-
posed as shown in Fig. 1 to address the problem of mis-
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Figure 1: Proposed methodology for motion field discontinuity clas-
sification.

Scale (%) [110.5] [221] [331.5] 44 2] [552.5]
Spatial Window 3 x3 5 X5 TxXT7 9x9 11 x 11
Temporal Window 3 5 7 9 11

Table 1: Experimental scales and spatial windows for the spatio-
temporal Gaussian filter, where the three values in ¥ correspond to
the scales on directions x, y and t, respectively.

classification of motion field discontinuities encountered in
the previous works [3][4][5].

3.1. Adaptive scale selection for the spatio-temporal
Gaussian filter

Fixed scale ¥ = [0, o0y o] was used in [3][5] for spatio-
temporal Gaussian filter h(z,y,t),

2 +2

— 1 _=2® oy
h(xayvt)—mmmexp( 20 202 Q) (2)

Note that small scale size would not be able to match/capture
the motion of a video object with large displacements, thus
leading to unconnected object boundaries. On the other
hand, exploiting large scale size for slow motions will reduce
the effectiveness of localization and cause blurred motion
discontinuities. Therefore, it is desirable to have adaptive
scale for the spatio-temporal filter, rather than using fized
scale.

The spatio-temporal filter with variable scales is intro-
duced in [4] by iterative symmetric Schur decomposition
and re-composition. But the thresholds of its scale adap-
tation are determined experimentally without theoretical
explanations.

Tensor-based optical flow computation is based on TLS
fitting. Since numerical stability of the TLS solution can

(c) Region

(a) Homogeneous

(b) Region

with corners

(d) Region

region with edges with more edges
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Figure 2: Some typical spatial sub-regions and their corresponding
condition numbers (CN) computed from the matrix which is consti-
tuted by pixel grayvalues.

be indicated by singular value decomposition (SVD) of the
local grayvalue variations, we exploit the condition number
to guide the scale selection of the spatio-temporal Gaussian
filter h(z,y,t) based on the observation presented in Fig.
2, which shows the typical sub-regions of the input frames.
The grayvalues of each sub-figure constitute one matrix,
whose condition number is also illustrated.

The condition number of local area Iq can be computed
by means of singular value decomposition (SVD):

Cond(Ia) = ||Ial|||I5|| = Z2e=. 3)
where 2 is the local area in the input frame which is con-
strained by the spatial scale (o0, and oy) of the spatio-
temporal filter, omaz is the maximum singular value and
Omin 1S the minimum one. Note that the condition num-
ber of a singular matrix is infinite, and smaller condition
number leads to more stable solution.

It can be further observed from Fig. 2 that the more ho-
mogeneous the area, the larger value the condition number.
The reason for this phenomenon is that coherent grayvalues
will cause high correlation in the matrix of Iq, thus the con-
dition number is near to the infinity as shown in Fig. 2 (a).
With the presence of corners and edges, the matrix corre-
lation is decreased significantly, and the condition number
becomes much smaller (see Figs. 2 (b)-(d)). Therefore, it
is reasonable to use the condition number of the local in-
tensities to steer the scale ¥ of the spatio-temporal filter.
In our experiments, the initialization of the scale ¥ is set
to be [I 1 0.5] and the spatio-temporal window size is
3 x 3 x 3. The scale-size of the spatio-temporal filter should
be extended recursively one by one to as referred to Table
1 until either the condition number are below 100 or the
scale-size reaches to the maximum one (11 x 11 x 11).

3.2. Structure tensors computation

After the input frames are filtered by scale-adaptive spatio-
temporal Gaussian filter which is steered by the condition
number, the components of structure tensor J are computed
using (1) for each pixel located within each sub-region. If
rank(J) = 2, it means that a distributed spatial bright-
ness structure moves at constant velocity, and no aperture
problem is presented within the sub-region [3]; thus, the
estimated full optical flow is reliable.

Although the eigenvalues of J denote the local grayvalue
variations along the dominant local orientations [3], conven-
tional structure tensor may give wrong indicators for motion
field discontinuities as shown in Fig. 3 (b), especially on the
corners and edges as highlighted by the red circle where the
grayvalue differences are less noticeable. The reason is that
conventional structure tensor has no relationship between
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Figure 3: Sub-figures (b)-(d) show the motion discontinuity classi-
fication results under different kinds of structure tensors (ST) com-
putation.
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Figure 4: Neighborhood weighting for the weighted structure ten-
sSor.

each pixel and its neighborhood. In order to solve this prob-
lem, the weighted structure tensor is proposed in our scheme
to provide local adaptation and defined as:

N-1N-1 ' '
> 2 wid(z +i,y+4,0). 4)

i=0 j=0

‘]W('T7 Y, t) =

which is the sum of functions J(z,y,t) within an N x N
window centered at (z,y,t), where N can be set from 3 to
7 and N = 3 is used in this paper. The weights w;; given in
their corresponding positions are experimentally designed
and represented in Fig. 4. The center pixel is marked by
“*77 .

Classification results by using the weighted structure
tensors are illustrated in Fig. 3 (c) and (d). It is quite
obvious that Fig. 3 (d) achieves the best result.

3.3. Eigen-space analysis on the structure tensors

To estimate optical flow field based on 3D structure ten-
sor, three eigenvalues A, (for k = 1,2, 3) of the local pixel
should be computed by eigen-space decomposition. Since
the smallest eigenvalue points to the main spatio-temporal
motion direction of local constant patches [3], the differ-
ences between the eigenvalues could be used to measure
the reliability of optical flow estimation, they are also used
as the indicators to distinguish different kinds of motion
vectors, such as full flow, normal flow, and so on.

As mentioned in Section 3.2, if rank(J) # 2, the weighted
structure tensor J,, is computed to avoid mis-classification
on motion discontinuities. However, in some cases, J,, needs
not to be used if the distance between J and J, in the eigen-
space is very small, i.e.,

La(A) = /(M = Xan)? +

(A2 = Aw2)® + (A3 — Awz)?. (5)
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Figure 5: TIllustration of different functions used in confidence mea-
surements for classifying motion field discontinuities. Only positive
part of the functions are illustrated because x used in mentioned
approaches is the distance measurement of the eigenvalues.

where A and )\, are the eigenvalues before and after weight-
ing the structure tensors, and they are sorted in the de-
scending order. The original structure tensor J should be
kept for the following eigen-decomposition if La(A) is less
than pre-determined threshold (e.g., 10), which means that
J. captures no more neighborhood information than J.

3.4. Proposed criteria for motion discontinuity in-
terpretation

3.4.1. A briefing of previous works

Several confidence measurements have been proposed for
classifying motion field discontinuities in [3][4][5]. As men-
tioned in Section 3.3, the most original criteria [3] were di-
rectly derived from the concept of tensor-based optical flow
estimation by thresholding the eigenvalues of the structure
tensor J. Here, the thresholds are set to be zero from the
theoretical point of view. But, for the real-world image se-
quences, it is impractical to threshold the eigenvalues by
zero value due to certain noise level in the input sequences.

Therefore, the normalized confidence measurements are
introduced [4][5]. The ratios of local eigenvalues are calcu-
lated using the fractional function f(z1,z2) = z1/z2. Some
experimental thresholds are used to distinguish five kinds
of motion discontinuities as proposed in [4] and shown in
Fig. 6 (c). Since the fraction function has no convergence
region (within [—oo, +0o0]), there is no theoretical method
to determine the variable scopes of the thresholds. An-
other normalization method is proposed in [5] by utilizing
the exponential function E(z) = e~“/® as shown in Fig. 5
(a). It can be observed that the convergence region of E(x)
is within [0, 1000] for z > 0. In order to use the maxi-
mum value (i.e., 1) as the threshold for confidence measure-
ments, the value of the normalization parameter C' should
be heuristically determined (C' = 5 in Fig. 5 (a)). Thus,
the motion field discontinuity interpretation is inaccurate
due to the application-dependent parameter used in this
approach.

3.4.2. Our proposed confidence measurements

In order to address the inaccurate thresholding in the pre-
vious works, new normalization function should be con-
ducted, whose convergence region needs to be shorter than
the uncertain scopes of confidence measurements. There-
fore, we exploit hyperbolic tangent function T'(z) = ﬁ,
for x > 0, to generate reliable confidence measurements as
shown in Fig. 5 (b). The convergence region of T'(z) is very
short within [0, 3] as compared with those of the functions
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Figure 6: Motion field discontinuity interpretations on the 9t" frame of *Taxi” sequence. In sub-figure (b), black and white colors are used
to represent optical flow and no flow fields, respectively. For representing more categories of motion vectors, five gray levels are used in sub-
figure (c): dominant gradient direction-perpendicular (DGD-PP) in black, optical flow discontinuities (OFD) in dark gray, dominant gradient
direction-optical low (DGD-OF) in medium gray, neutral OF (NOF) in light gray and regular optical flow (ROF) in white; in sub-figure (d),
four gray levels are used in our method: FF in black, NOF in darker gray, OFD in light gray and NF in white.

in Section 3.4.1; thus, it provides accurate thresholding for
the value of T'(z), where the variant x is constituted by the
eigenvalues of the local pixel. The belonging of the local
pixel will be determined into one of four kinds of motion
fields according to the minimum value 0 or maximum value
1 of T'(z), which are defined as:

o Full flow (FF): If rank(J) = 2 or rank(J,) = 2, or
T'(z1) is near to 0 (where 1 = |A2 — A3|), this indicates that
a structure containing grayvalue changes in two directions,
i.e., corner area, and moves at a constant speed, and the
real motion can be calculated in this case.

e No optical flow (NOF): If the condition number is near
to infinity (c0), or all three eigenvalues equal to zero, i.e.,
T(z2) is near to 0 (where 2 = |A; — As|), this indicates a
homogeneous local area; thus, no motion can be detected.

e Normal flow (NF): If T'(z31) is near to 0 (where z31 =
[A3]/]A1 + A2 + As|), and T'(z32) is near to 1 (where z32 =
[A2 — Ag|), this indicates that the gray-value changes will
happen in one direction only, i.e., edge area, and this is the
well-known aperture problem.

e Optical flow discontinuity (OFD): If all three eigen-
values are greater than zero, i.e., T'(z4) is near to 0 (where
za = |As|/|A2]), the local fitting of the optical flow model
will fail, this indicates the discontinuity along the border of
conjoint areas with different motions.

4. EXPERIMENTAL RESULTS

Simulation results on part of the ninth frame of “Rotating
Rubik Cube” have been presented in Fig. 3. It is quite
clear that the proposed unequal weights yields much better
classification results on motion discontinuities (i.e., corners
and edges) compared with that of conventional structure
tensor approach [3].

Test sequence “Hamburg Taxi” is also chosen because
the classification resulting from our approach can be com-
pared with the ones provided in the previous methods as
illustrated in Fig. 6. Sub-figure (a) shows the original
frame. Experimental results from Kiihne et al.’s method [5]
are given in sub-figure (b), and note that some boundaries
around the moving objects are both unconnected and inac-
curate. Although results from Middendorf et al.’s method
[4] demonstrated in sub-figure (c) have enclosed boundaries,
they are not aligned with the actual edges of the objects.
Significant improvement on boundary accuracy of video ob-
jects resulted from our method are illustrated in sub-figure

(d). Furthermore, their backgrounds (i.e., those homoge-
neous regions as indicated by the white color) are much
more clean than the ones from other approaches.

5. CONCLUSIONS

Owing to unsatisfied classification for tensor-based motion
field discontinuity presented in the previous works, a much
more accurate approach is proposed with three novelties as
follows. First, adaptive scale selection steered by the con-
dition number for the spatio-temporal filtering is provided
to match multiple object motions in input image sequences.
Second, more accurate motion discontinuity interpretation
is obtained by implementing unequally weighted structure
tensor. Third, a new normalization function is developed
to facilitate accurate thresholding for confidence measure-
ments. Experimental results show that the performance
of our scheme is much better than that of some previous
works on the aspect of improving the accuracy of motion
field discontinuity classification.

Some aspects of the proposed method need to be further
investigated. Optical flow estimation will be implemented
using our scheme, as well as its comparison with the results
of previous leading algorithms. Another work is to conduct
anisotropic spatio-temporal filtering instead of the isotropic
one. The anisotropic filters are capable of preserving sharp
edges/local direction patterns by automatic scaling of lo-
cal areas and iterative refinement of the filtering results.
They are also less sensitive to the noise than isotropic fil-
ters; therefore, the problems of exploiting anisotropic filters
into our scheme requires further investigation.
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