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ABSTRACT

In this paperwe proposea reducedcomplexity techniquefor the
rate-distortionoptimizationin JVT/H.26Lin thepresenceof packet
erasures.It is namedfew decoders in the encoder, andis basedon
the ideaof generatinga selectednumberof error patternsin the
encoder, sothata limited numberof co-decodingprocessescanbe
implementedto estimatethetransmissiondistortionterm.Thecor-
relationamongstpacket erasuresis taken into accountemploying
a binaryGilbert model.Theproposedalgorithmexhibits compet-
itive performancein termsof averagePSNRand probability of
decodingfailure,with veryaffordablecomplexity andmemoryre-
quirements.

1. INTRODUCTION

In this latter years,therehasbeenan increasinginterestin mul-
timediaapplicationsover networks subjectto bit errorsor packet
erasures.In orderto provide acceptablevideoquality in suchsit-
uations,a compromisemustbeidentifiedbetweenQuality of Ser-
vice(QoS),bandwidthor transmissionrate,anddelay. Thiscanbe
achievedimplementingerrorresilienttechniquesat theencoder, as
well as forward error correctionat the network adaptationlayer,
andconcealmentof the residualerrorsat the decoderside. Re-
siliencetools, suchasreversiblevariablelengthcoding(RVLC),
insertionof intra-macroblocks,datapacketization,areincludedin
all recentvideostandardssuchasH.263+andMPEG-4.However,
it is well recognizedthatmostof thesemethodsimply a reduced
compressionefficiency. A bettertradeoff betweenbandwidthand
resiliencecanbe identifiedtaking the distortiondueto transmis-
sionerrorsinto accountin the rate-distortion(R-D) optimization.
In this way, theamountof redundancy necessaryto copewith the
actualnetwork statusis introduced.In [1], intra/intermacroblock
(MB) codeselectionandpacketizationarejointly optimized,tak-
ing into accountthe distortion due to error propagation. In [2],
anoptimizationof the forcedintra MB codingandtheplacement
of synchronizationmarkersis pursued,consideringthe impactof
the data partitioning on error concealment. Also the emerging
JVT/H.26L video standard[3] aimsat achieving error resilience
levels suitablefor conversationalservices,without significantin-
creasingthe outputbit rate. It addressesan optimum R-D opti-
mization for the MB modeselection,wherethe distortion term
takes into accountnot only the sourcecoding, but also the net-
work behavior andthe error concealmentstrategiesimplemented

at thedecoder. In otherwords,thedistortionat the receiver is es-
timatedandemployed for the optimal codingmodeselectionon
a macroblockbasis.As it is not realisticto assumethat feedback
informationon thenetwork statusis availablein real time, theef-
fect of packet erasuresis estimatedat the encodergeneratinga
given number

�
of possibleerrorpatterns,basedon thenetwork

lossprobabilitydistribution. Thesampledistortionrelatedto each
error patternis thenevaluatedsimulatinga co-decodingprocess,
andtheexpecteddistortionis estimatedby averagingover the

�
availablesamples.This approach,althoughbeingsimpleandef-
fective,suffersfrom arelevantcomputationalcomplexity andhuge
memoryrequiements.In fact, in ordernot to exhibit appreciable
suboptimality, quitelarge

�
valuesmustbeaddressed.

In this paper, we start from the describedoptimizationstrat-
egy, namedmany decoders in the encoder (MDE), and address
theissueof drasticallyreducingthecomputationalcomplexity and
memoryrequirements,at theexpensesof slightor nearlyapprecia-
bleperformancedegradation;thisapproachis namedfew decoders
in the encoder. Moreover, having recognizedtheneedto properly
assessthenetwork lossdistributionin orderto actuallyachieveop-
timal performance,we refinethe modelemployed in theencoder
for the distortionestimation,assumingthat lossesaredistributed
accordingto aGilbert model.

2. RATIONALE

Many recentpapersaddressLagrangianMB modedecisionfor
theselectionof thebestcodingmodein aR-D optimizationsense.
Formally, the optimizationcan be expressedby finding the best
codeoption ��� suchas

� �����	��
	��
�������������� ������� � � ���!� (1)

where " detotesthe setof all possiblecodingoptions � for the
currentMB, and ��� ��� , � � ��� arerespectively theoveralldistortion
andtheresultingratewhencodingmode� is selected.In practice,
whereastheevaluationof � � ��� is trivial, beingsimply thenumber
of bits assignedto thecurrentMB whenit is encodedwith coding
option � , the evaluationof the distortion term ��� ��� is far more
complicated.In fact,anoverall optimizationhasto beperformed,
taking into accountalsothe transmissionerrorsandthe conceal-
mentoperatedat thereceiver; in otherwords,thedistorsionat the
receiver mustbeevaluated.Whereastheconcealmentstrategy can
be assumedknown at the receiver side,this is not true asfor the
network behaviour. Eventhoughfeedbackmechanismshave been
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consideredto make the receiver awareof thenetwork conditions,
this taskcannotbeperformedin real time; therefore,it cannotbe
assumedthatthereceiver hasknowledgeof thenetwork behavior,
asfor the currentMB beingcoded. Following the samenotation
of [4, 5], let usdefinethenetwork behavior whenthe � -th frame
is transmittedasa binarysequence#%$	&('�) , where* �+� � is thenum-
ber of packetsnecessaryfor transmittingthe � -th frame;a value
”0” in the channelsequencemeansthat the packet hasbeencor-
rectly received, whereasa value”1” denotespacket erasure.As
thenetwork behavior is notknown at thereceiver, it is modelledas
a randomvariable(RV) ,-$.&('�) .

In [4, 5] the channeldistortion is estimatedat the receiver,
on a pixel-by-pixel basis.Let / '.0 120 3 and 4/ '.0 1�0 3 � �	56, $.&7'�) � be re-
spectively the true and the reconstructedvaluesof the 
 -th pixel
in the � -th MB in frame � , with 
8�:9 5�;%;%;�5!< , �=�>9 5%;%;%;�5@? ,�A�B9 5C;%;%;�5ED . The reconstructedvalueis obviously dependent
ontheselectedcodingoption � andon ,-$.&('�) . Then,thedistortion
contributionyieldedby thispixel canbewrittenasF '	0 1�0 3 � ��� �HG / '.0 1�0 3JI 4/ '	0 1�0 3JK �	5@, $.&7'�)ML G N
andtheoverall distortionof the � -th MB in frame � is

� '.0 1 K �.5@, $	&('�) �OL � 9<
PQ
3SRUT G / '.0 120 3JI 4/ '	0 1�0 3 K �	56, $	&('�) L G N

Clearly, the overall distortionis a RV dependingon the network
behavior; the problemis then to estimateits expectedvalue. In
the MDE technique,it is assumedthat

�
realizations#C$.&('�) ��V � ,V:�W9 5�;C;%;J5 � of the RV , $	&('�) are available. If

�
is large

enough,the expectedvalue of the distortion is estimatedby av-
eragingthesampledistortionterms,evaluatedfor eachsamplese-
quence# $.&('�) ��V � :
XZY\[�]7^�_J` � '.0 1 K �.56, $	&('�) Lbadc 9�feQg RhT � '	0 1 K �	5!# $.&('�) ��V �OL (2)

This approximationis accuratein thelimit
�jilk

, andin prac-
tice it holdsfor

�
values“largeenough”.This implieshugecom-

putationalburdenandmemoryrequirementsat the encoderside.
In fact,

�
co-decodingprocessesmustbe implementedfor each

MB beingencoded.Whethersuchcomplexity canbeaffordedin
practiceor not is a ratherquestionablepoint.

3. FEW DECODERS IN THE ENCODER

AssumingtheMDE methodasa startingpoint,we want to devise
analternative technique,with thegoalof drasticallyreducingthe
computationalcomplexity andthememoryrequirements,evenat
theexpensesof a slight performancedegradation.

The MDE is almostoptimal, as it takes into accountpoten-
tially all the possiblenetwork behaviors to estimatethe expected
distortion value. The key idea leadingto the FDE algorithm is
to consideronly a properlyselectedsubsetof randomerror pat-
terns,makingsomeassumptionsin order to limit the numberof
co-decodingsimulationsfor eachencodedMB.
Assumption 1: a window of D framespreceedingthecurrentone
isconsidered,andnoerrorpropagationoccursfromdatabelonging
to framesnot includedin suchwindow. In general,this assumtion
is notexactlysatisfied;for example,in thecommonsituationwhen
only thefirst framein thestreamis intra coded,thereis potential

errorpropagationfrom any framein thestream.However, theas-
sumptioncan be madeadequatelypreciseby selectinga proper
valueof D .
Assumption 2: themotionvectorsof � -th MB in thecurrentframe� arenull. This implies that thepossibleerrorsimpactingon the
distortionof thisMB areonly thoselocalizedin thespatiallycorre-
spondentMB in framesm , � I Djn�mon � I 9 . It is worthnoticing
thatthisassumption,althoughbeingratherabrupt,is coherentwith
theprincipleof selectinga veryefficient encodingmethod.

Under theseassumptions,all the possible p�q error patterns
at the macroblock level (or MB error patterns) canaffect thedis-
tortion of the � -th MB. In fact, only the spatiallycorrespondent
MB belongingto the D framesin thewindow areinvolved in the
predictionof the MB at hand. Therefore,in the FDE algorithm,
the p�q MB errorpatternsaregeneratedin the form of binary se-
quencesof length � , wherea “1” denotesthat the MB hasbeen
lost,whereasa“0” meansthattheMB hasbeencorrectlyreceived;
thesesequencesareusedto estimatetheexpecteddistortion.This
approachis differentfrom thataddressedin [5], wherethenetwork
behavior is simulatedatthepacket level. Moreover, thepacket loss
patternsareconsideredequiprobable,ascanbe inferredfrom Eq.
2, wherethe expecteddistortion is evaluatedas a not weighted
arithmeticmeanvalue. Here,we associateto eachMB errorpat-
ternaprobabilityof occurrencer ��V � , Vs�ut 5�vCv%v%56p�q I 9 , andthe
distortionis evaluatedas:

X Yw[�](^�_ ` �x'.0 1uK �.5@,-$	&('�)yLbazc N!{8| TQg
R~} r ��V � �d'	0 1�� �.5!# ��V �!�

where � '.0 1 � �	5!# ��V �!� is the MB distortion given the V -th error
patternat theMB level, and r ��t � is theprobabilitythattheMB is
correctlyreceived. Theprobabilityof occurrenceof theMB error
patternsis evaluatedinvokingthenetwork characteristicsatpacket
level, andinferring thestatisticalpropertiesatMB level exploiting
theruleemployedto mapframesinto packets.Moredetailsonthis
point aregivenin Sect.4, wheretheunderlyingnetwork modelis
described.

In practicalterms,themaindifferencebewteenFDEandMDE
is thattheformerrequiresp q insteadof

�
simulatedco-decoding

processesat the encoder. Sincethe impairmentdueto transmis-
sion errorssomehow decayswith time [5], a limited window du-
rationof 2-3 framesis expectedto yield satisfactoryperformance.
This is confirmedby the simulationresultspresentedin Sect. 5.
Therefore,FDE is expectedto exhibit a drasticallyreducedcom-
putationalcomplexity with respectto MDE.

The selectionof the Lagrangemultiplier � in Eq. 1 devises
someattention.It is well known [4] that thefollowing expression
holds: � ���O9 I�� � � � � }
where � } is theLagrangemultiplier for error-freetransmission,�
is theMB lossprobability, and � � is theprobabilitythattherefer-
encedimagepart is correct.It is recognizedthattheestimationof
this latterparameteris not straightforward. In [4], it is statedthat
this probability decreaseswith increasingdistanceto an intra re-
freshof a certainregion,andalsodependson � . In this paper, we
estimate� � underthe assumptionsthat the motion vectorsof all
intercodedMBs arenull. In thiscase,� � is theprobabilitythatthe� -th MB in all framesbetweenm and � I 9 arecorrectlyreceived,m being the nearestframewhose � - th MB is Intra coded. The
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directevaluationof this probability is performedusingthepacket
lossmodeladdressedin Sect.4.

4. PACKET LOSS MODEL

Anotheraspectto becontrolledin orderto assurea goodapprox-
imation of the overall R-D optimization is the model of packet
losseswhich describestheunderlyingnetwork behavior. A com-
mon assumptionis that lossesarestatisticalindependentof each
other, andidenticallydistributed(IID); in this case,theonly rele-
vantparameteris theprobabilityof packet loss,which canbeeas-
ily estimated.In spiteof its simplicity, suchamodeldoesnotade-
quatelyrepresentthosecontexts wherelossesoccurin bursts;this
behavior is typicalof theInternet,wherecongestionandexcessive
delay in packet delivery are responsibleof the packet losses,as
well asof transmissionover wirelesschannelsaffectedby fading
andshadowing. In this paper, we take into accountthecorrelation
amongsubsequentpacket lossesandemploy thesimpleyet effec-
tive Gilbert modelfor evaluatingtheprobabilityof eachlosspat-
ternrealization.TheGilbert model[6] is a 2-stateMarkov chain;
in theG (good)state,packetsarelostwith probability � � , whereas
in theB (bad)statethey arelostwith probability ��� . In its simplest
binary version,alsoadoptedin this paper, � � ��t and � ���=9 .
Theevolution of theMarkov chainis dictatedby theprobabilities� and � of sojournin eitherstate. If ��� is a randomvariables
denotingthe time of sojournin the B state,it canbe shown that
its expectedvaluesis � � � Xx� � ��� ���O9 I � �@| T This parame-
ter representstheexpectedlengthof errorbursts,andit oneof the
two parametersemployedto describetheGilbertmodel.Theother
significantparameteris theexpectedlossprobability, which,in the
binarycase,canbewritten as

� � 9 I �p I � I �
In this case,it alsocoincideswith theprobability rU� thatthesys-
temis in stateB.

Thismodelhasbeenemployedtoevaluatetheprobability r ��V �
of the V -th errorpatternat theMB level addressedin theFDE al-
gorithm. Clearly, this probability dependson the packet forma-
tion strategy, on the actualpositionof theMB, within thepacket
stream,andonthenetwork behavior duringthetransmissionof the
preceedingpackets.Therefore,thenetwork statisticsat thepacket
level mustbetranslatedinto statisticsat theMB level. Takeninto
accountthat themotion vectorsof � -th MB areconsiderednull,r ��V � canbe formalizedasa chainof statesassumedby the net-
work duringthetransmissionof a numberof packetsnecessaryto
embedthe D framesincludedin thewindow. More detailson the
probabilityevaluationcanbefoundin [7].

5. SIMULATION RESULTS

Theproposedalgorithmhasbeentestedusing”Foreman”(QCIF,
7.5 fps) and ”Mother and Daughter(M-D)” (QCIF, 10 fps) en-
codedwith the H.26L test modelJM1.4 The framesaredivided
into slices,andeachsliceis mappedinto a singlenetwork adapta-
tion layerpacket (NALP). A tradeoff hasbeenidentifiedbetween
globaloverheadandpacket length,consideringthat theprobabil-
ity that a packet is affectedby at leastone error increaseswith
thepacket length.Theseconsiderationsled to theselectionof 512
bytesfor Foremanand400bytesfor MotherandDaughterasfor

the averageslice dimension. The NAL overhead,aswell as the
RTP/UDP/IPcompressedheader(3 bytes),thePPP/PDCPheader
(2 bytes)andthe RLC (4 bytes)aretaken into accountin the bit
rateconstraints.Entropy codingbasedonUVLC is addressed,and
the simple”previous frameconcealment”methodis applied. As
for thepacket lossstatistics,both theindependentlossmodeland
thebinaryGilbertmodelareconsidered.

The algorithmhasbeentestedusingthe commontestcondi-
tionsfor packetswitchedconversationalor streamingservicesover
3G mobile networks. In particular, we have employed Patterns
2 and 3, the former being representative of severe channelcon-
ditions, whereasthe latter representsmilder conditions,suitable
for conversationalserviceswith retransmissionsnot allowed. The
characteristicsof thepatternsemployed aresummarizedin Table
1. The parametersrh� and ��� of the Gilbert model employed
at theencoderhave beenevaluatedbasedon thoseerrorpatterns,
leadingto:

Pattern 2: Foreman: rU� ��t v t���� , ��� ��9 v � ; M-D: rh� �t v t���� , ��� ��9 v � .
Pattern 3: Foreman: r � ��t v t p � , � � ��9 v � ; M-D: r � �t v t p�� , ��� ��9 v � .

Pattern Bit rate duration BER Speed
2 64kbps 60s 9.3e-3 3 km/h
3 64kbps 180s 5.1e-4 3 km/h

Table 1. Packet losspatterns(after[8]).

The effect of employing a Gilbert model in the encoderhas
beenevaluated.To this end,theMDE algorithmwith severalval-
uesof

�
hasbeencomparedwith a modifiedversionincludinga

Gilbert model in the encoder. The performancehave beencom-
paredin termsof theaveragePSNRandtheprobabilityof failurerh� , definedastheprobabilitythattheaveragePSNRdropsbelow
a predeterminedthreshold,so that thequality is consideredunac-
ceptable.The situationsof failure have not beenincludedin the
PSNRcomputation.Thethresholdhasbeensetat 24dB for Fore-
manand30dB for M-D, this latterbeingcharacerizedby ahigher
PSNRthan the former encodedat the samerate, in the absence
of transmissionerrors.Therateis controlledvia thequantization
parameter��r , which hasbeensetto 20 for Foreman,and13 for
Mother andDaughter. The resultsobtainedemploying the error
pattern3 aresummarizedin Table2.

It canbe noticedthat,asexpected,the performanceof MDE
increaseswith

�
, althougha saturationeffect canbeappreciated

when
�

exceeds40. This is alsoconfirmedfrom simulationsper-
formed employing the error pattern2, not reportedfor brevity.
TheGilbertmodelturnsout to beadvantageous,showing aperfor-
manceimprovementin the range0.1 - 0.6 dB with respectto the
standardMDE algorithm.Thisquality improvementis obtainedat
theexpensesof aslightly largerrate;thismeansthattheuseof the
Gilbert model in the encoderleadsto the selectionof a different
optimizationpointof theR-D curve.

The FDE algorithm is then validated,comparingits perfor-
mancewith MDE anddifferentnumberof simulatedco-decoding
processes,

�
. The resultsaresummarizedin Table3. For both

pattern2 and3, the two sequencesForemanandM-D have been
encodedusing� FDE with 4 and 8 simulateddecoders(correspondingtoD � p and D � � respectively)
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Loss model
�

Rate (kbps) PSNR (dB) r � (%)
Foreman
MDE(BSC) 20 54.44 31.09 7.00
MDE(Gilbert) 20 57.79 31.48 5.17
MDE(BSC) 40 57.57 31.47 5.30
MDE(Gilbert) 40 58.92 31.57 6.03
MDE(BSC) 60 58.77 31.38 5.93
MDE(Gilbert) 60 60.99 31.65 4.41
MDE(BSC) 80 58.45 31.54 4.07
MDE(Gilbert) 80 63.52 32.11 1.17

M � D
MDE(BSC) 20 50.33 37.04 1.75
MDE(Gilbert) 20 52.81 37.41 0.50
MDE(BSC) 40 50.58 37.42 1.56
MDE(Gilbert) 40 52.56 37.52 2.17
MDE(BSC) 60 54.10 35.53 1.63
MDE(Gilbert) 60 53.72 37.58 1.94
MDE(BSC) 80 50.69 37.27 1.69
MDE(Gilbert) 80 52.79 37.62 2.14

Table 2. Performanceof standardandmodifiedMDE, this latter
employing theGilbertmodel;errorpattern3.

� MDE with
� � � , and

� � ��t ; the former hasbeen
selectedas it allows for direct comparisonwith FDE andD � � , the latter beingrepresentative of asymptoticper-
formance.

Thecomparisonsaremadein termsof achievedrate,averagePSNR,
and rh� aspreviously defined.Thequantizationparameter��r is
alsoreported.

¿Fromthepresentedresults,it canbeobservedthata window
duration D � � is adequate.If theFDE algorithmwith D � � is
comparedwith MDE and

� �¡� , it yieldssuperiorperformance
in termsof bothPSNR(with againbetween0.42and1.45dB) andr � , which is alwaysconsiderablylower. It mustbe recalledthat
the two algorithmsaredirectly comparablein termsof computa-
tional complexity, this latter beinglinearly dependenton

�
. On

theotherhand,theperformanceof MDE with
� �u��t is superior

with respectto FDE with D � � . This is not surprising,asMDE
with anadequatenumberof simulatedco-decodingprocessesap-
proachesthe optimumR-D performance.In detail,FDE exhibits
a lossrangingbetween0.27and0.77dB in theconsideredsitua-
tions. However, this performancegapis limited, consideringthat
it is achievedattheexpensesof acomputationalcomplexity which
is approximatively tentimeslargerfor MDE with respectto FDE.

6. CONCLUSIONS

In this paperwe proposea reducedcomplexity method,named
few decoders in the encoder, for the rate-distortionoptimization
in JVT/H.26L in the presenceof packet erasures.The algorithm
exhibits competitive performancein termsof averagePSNRand
probability of decodingfailure, with very affordablecomplexity
andmemoryrequirements.Futureresearchcan be in the direc-
tion of includingmoresophisticatedconcealmentstrategiesin the
optimizationtask,andthecombinationof ratecontrolschemes.

Method
�

Rate (kbps) PSNR (dB) r � (%)
PATTERN 2
Foreman ( ��r � p�� )
FDE 4 56.45 28.97 11.48
FDE 8 60.15 29.67 7.39
MDE 8 53.32 28.91 16.13
MDE 80 63.83 30.01 8.25

M � D ( ��r �¢9%£ )
FDE 4 55.81 35.11 5.70
FDE 8 61.30 36.59 1.63
MDE 8 48.61 35.14 8.57
MDE 80 55.94 36.86 5.14

PATTERN 3
Foreman ( ��r � p t )
FDE 4 57.51 30.51 9.10
FDE 8 60.93 31.34 4.50
MDE 8 55.44 30.92 9.77
MDE 80 63.52 32.11 1.17

M � D ( ��r �¢9 � )
FDE 4 52.20 36.61 3.38
FDE 8 54.07 37.18 1.63
MDE 8 50.59 36.76 2.94
MDE 80 52.79 37.62 2.14

Table 3. ComparisonbetweenMDE, FDE.Forbothalgorithms,
�

is thenumberof co-decodingprocessessimulatedat theencoder.
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