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ABSTRACT
In transform-based image coding, the periodic extension has
the disadvantage that it might introduce high frequency com-
ponents due to the artificial discontinuities at the signal bound-
aries. On the other hand, the symmetric extension can’t be
applied to the two-channel orthogonal filter bank because
linear phase is not possible.

This paper describes a smooth extension method, which
provides the symmetric decimated outputs of the analysis
filters at the boundary, for the two-channel orthogonal fil-
ter bank to obtain nonexpansive subband signals. In our
approach, extended signal has the flexibility and we calcu-
late the smooth one by singular value decomposition. Fi-
nally, several image coding and extended signal examples
are shown to confirm the validity of the proposed approach.

1. INTRODUCTION

There has been a significant growth in the field of filter
banks and multirate systems [1]. These systems provide
efficient ways to represent signals for processing and com-
pression purposes. Wavelets are an even more recent ap-
proach in which the two-channel filter bank is iterated to
the lowpass branch [2]. Fig. 1 shows the typical structure of
the two-channel filter bank. The input signal x[n] is split in
two subbands through the analysis filters Hi(z) (i = 0, 1)
and decimators. The reconstruction system is formed by in-
terpolators and synthesis filters Fi(z) (i = 0, 1). In general,
this system causes the problem that the total number of the
subband signals is greater than that of input signal after the
analysis process [3]. Given a input x[n] with L samples and
filter hi[n] with M taps, the linear convolution output will
have L + M − 1 samples. This expansive effect is unde-
sirable in data compression applications. The truncation to
obtain nonexpansive subband signals would of course cause
distortion in the reconstructed signal.

Several methods for solving this problem have been sug-
gested. One simple nonexpansive approach is based on the
signal periodic extension [1]-[3]. Let us consider the ex-
ample input signal x[n](n = 0, 1, . . . , L − 1) of Fig. 2(a),
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Fig. 1. Two-channel filter bank.

where L is even. The periodic extension means that the in-
put signal is periodically extended as shown in Fig. 2(b)
before the signal decomposition, and leads to the periodic
outputs vi[n] with period L for any filters hi[n]. The main
drawback with this technique is that the extended signal
x̃[n] might cause large discontinuities across the boundaries
and require more bits to code large wavelet coefficients in
the highpass band at the boundary.

The symmetric extension method was proposed to over-
come the problem of boundary distortion and still obtain
a nonexpansive subband signals [3]-[6]. In this approach,
input signal is extended periodically and symmetrically as
shown in Fig. 2(c) to maintain continuity across the bound-
aries. Suppose the analysis filter hi[n] are (anti-)symmetric,
the outputs vi[n] are also (anti-)symmetric and periodic with
period 2L. Then, the half of the samples in signals vi[n] can
be eliminated by symmetry and the output signals vi[n] need
to retain only L samples. However, the symmetric extension
has the restriction that filters have to be linear phase. There-
fore, this technique can’t be applied to the two-channel or-
thogonal filter bank [1][2].

In this paper, we propose an efficient extension method
for nonexpansive orthogonal wavelet decomposition, which
make the subband signals symmetric at the boundary. As
mentioned above, the subband signals, namely decimated
output signals of the analysis bank, based on the periodic
extension and the symmetric extension are periodic and/or
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Fig. 2. Illustration of signal extension. (a) The finite length
signal. (b) The periodic extension. (c) The symmetric ex-
tension.

symmetric. Hence, the coefficient expansion is eliminated
and the discarded samples can be retrieved by the priori
knowledge before synthesis process. Our scheme is similar
to the symmetric extension scheme in that the discarded sig-
nal can be retrieved by the symmetry. To achieve smooth-
ness, the extended input samples, which have minimum dis-
tance to the closest original input sample, are found by us-
ing singular value decomposition. The simulation results
for various images show that the proposed extension gives
smoother signal and better coding efficiency than the peri-
odic extension, and has the comparable performance to the
symmetric extension.

2. A SMOOTH EXTENSION METHOD FOR
ORTHOGONAL WAVELET DECOMPOSITION

2.1. Condition of the nonexpansive decomposition

Assuming that a two-channel orthogonal filter bank with
M = 4k + 2j tap filters (k = 1, 2, . . . ; j = 0, 1), we will
show the extension for the left boundary (n < 0) and the
reader can easily infer the extension for the right boundary
(n ≥ L). In practice, the discarded k samples need to be
retrieved before the synthesis system. Let us define that the
analysis filter is hi[n](i = 0, 1; n = 0, 1, . . . , M − 1), the
input signal is x[n](n = 0, 1, . . . , L − 1), and the extended
signal on the left is x̂[n](n = −M + 1,−M + 2, . . . ,−1),
respectively. Then, the decimated output signals yi[n](n =
−k,−k + 1, . . . , k − 1) is given by

Yl
i = HiXl, for i = 0, 1 (1)

Yl
i = [yi[−k], · · · , yi[−1],

yi[0], · · · , yi[k − 1]]T

Xl = [x̂[−M + 1], · · · , x̂[−1],

x[0] · · · , x[M − 2]]T

Hi =




hi[M − 1] hi[M − 2] · · · hi[1]
0 0 hi[M − 1] hi[M − 2]
. . .

. . .
. . .

. . .
0 · · · · · · · · ·

hi[0] 0 · · · · · · · · · 0
· · · hi[1] hi[0] 0 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .
0 hi[M − 1] hi[M − 2] · · · hi[1] hi[0]




where Yl
i is 2k×1 subband vector signal, Xl is 2(M−1)×1

input vector signal, and Hi is 2k×2(M −1) analysis trans-
form matrix created by the circular shifting of the analysis
filters hi[n]. Here, the vector Yl

i,X
l are partitioned into

two vectors of same length and the matrix Hi is partitioned
into four submatrices of same size as

Yl
i =

[
ŷl T

i ,yl T
i

]T
(2)

Xl =
[
x̂l T ,xl T

]T
(3)

Hi =
[

h11
i h12

i

h21
i h22

i

]
.　 (4)

From (2)-(4), the condition for the symmetric subband sig-
nals of the analysis system, that is Jŷl

i = yl
i (i = 0, 1), is

given as

J
(
h11

i x̂l + h12
i xl

)
= h21

i x̂l + h22
i xl

for i = 0, 1 (5)

where J denotes the k × k reversal matrix. We finally ex-
press the condition of the extended input vector x̂l in the
following way:

Alx̂l = bl (6)

Al =
[

Al
0

Al
1

]
bl =

[
bl

0

bl
1

]
xl, (7)

where

Al
i = Jh11

i − h21
i bl

i = h22
i − Jh12

i . (8)

2.2. Calculation of the smooth extended signal

From (6)-(8), the extended vector signal x̂l is not unique be-
cause Al is 2k×(M−1) matrix. To restrain discontinuity at
the boundaries, we calculate the extended vector signal x̂l,
whose samples x̂[n] (−M +1 ≤ n < 0) have the minimum
distance to the first input sample x[0]. This minimization
problem for x̂l is written as

min
∥∥ x̂l − x[0]E

∥∥
subject to Alx̂l = bl (9)

E = [1, 1, . . . , 1]T , (10)
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where E is (M − 1) × 1 vector. Furthermore, if we write
x̄l = x̂l − x[0]E, the equation (9) is rewritten as

min
∥∥ x̄l

∥∥
subject to Alx̄l = bl − x[0]AlE. (11)

To solve the aforementioned problem, we use the singular
value decomposition (SDV). Recall that every matrix has
a SVD representation A = ULVT , where U and V are
orthogonal matrices, and L is a diagonal matrix with the
elements wi. Hence, the inverse matrix A−1 of A is given
as

A−1 = V [ diag(1/wi) ]UT . (12)

Finally, the solution x̄l in (11) is given as

x̄l = Vl [ diag(1/wi) ]l Ul T ·(
bl − x[0]AlE

)
(13)

and we can calculate the smooth extended vector signal x̂l

by substituting x̄l to x̂l = x̄l + x[0]E.

3. SIMULATION RESULTS

The performance of the proposed extension is evaluated through
an wavelet-based image coding comparison among the pro-
posed extension, the periodic extension, and the symmetric
extension. In all cases, five levels decomposition is imple-
mented and the progressive image coder EZW based on in-
traband partitioning is used[7]. The three images chosen for
the image coding experiments are Barbara, Girl, and Lena,
which are 512 × 512 8-bit gray-scale test images.

3.1. Daubechies filter D4 and 5/3 filter

We apply the proposed extension and the periodic extension
to the minimum-phase Daubechies filter D4 of length 4, and
the symmetric extension to the 5/3 filter[1][2]. The PSNR’s
from using three extension methods at various bit rates are
tabulated in Table 1. It is clear that the proposed extension
technique outperform the periodic extension technique.

3.2. Daubechies filter D12 and 9/7 filter

We apply the proposed extension and the periodic exten-
sion to the length 12 Daubechies filter D12 with approxi-
mate linear phase [8], whose coefficients are shown in Ta-
ble 2, and the symmetric extension to the 9/7 filter[1][2].
The PSNR’s from using three extension methods at various
bit rates are tabulated in Table 3. Extended signal to its left
for the 256th row of Barbara image is shown in Fig. 3. It
can be clearly observed that the proposed technique intro-
duces smoother extended signal and offers higher coding
performance than the periodic extension. Compared with
the symmetric extension, the proposed approach has com-
parable performance.

Table 2. Filter coefficients of the D12 filter

n h0[n]
0 0.01540410932712
1 0.00349071207723
2 -0.11799011119059
3 -0.04831174268055
4 0.49105594184196
5 0.78764114103902
6 0.33792942181793
7 -0.07263752270893
8 -0.02106029248074
9 0.04472490178233

10 0.00176771187070
11 -0.00780070832272

4. CONCLUSIONS

In this paper, we propose an extension approach to process
finite length signals via two-channel orthogonal filter banks.
To address the expansive problem and guarantee continuity
at boundaries, the extended signal is determined in such a
way that its output signals are symmetric, and we calcu-
late the smooth one by simple matrix operation. This tech-
nique would take little more time to extend input signal in
analysis process than the periodic and the symmetric exten-
sion. However, there is no difference between the proposed
approach and the symmetric approach in synthesis process.
The simulation results show that the proposed approach pro-
vides a great improvement over the periodic extension and
similar performance to the symmetric extension.
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Fig. 3. Examples of extended signal for 256th row of Bar-
bara image
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