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ABSTRACT

We propose a new spatial just noticeable distortion (JND)
profile for color image processing. The JND threshold de-
pends on various masking effects underlying existing in hu-
man vision system (HVS). How to efficiently integrate dif-
ferent masking effects together is the key issue of modelling
JND profile. Based on recent vision research results, we
model the masking effects in different stimulus dimensions
as a nonlinear additivity model for masking (NAMM). It
applies to all color components and accounts for the com-
pound impact of luminance masking and texture masking
to estimate the just noticeable distortion (JND) threshold in
images. In our PSNR and subjective comparison to the re-
lated work, the proposed NAMM scheme provides a more
accurate JND profile towards the actual JND bound in the
HVS.

1. INTRODUCTION

Human eyes cannot sense any changes in an image that are
below the just noticeable distortion (JND) threshold [1].
Methods have been proposed for JND profiling in subbands
[2] [3] and images [4] [5], and spatial JND profile is par-
ticularly useful for perceptually optimized subband coding,
motion estimation, conditional replenish and data hiding.
The JND threshold derives from various masking effects in
human vision system (HVS), and there are primarily two
factors affecting the spatial JND: luminance masking and
texture masking. Since they co-exist in most images, how
to efficiently integrate these two masking effects is an im-
portant issue in obtaining accurate JND profile.

Although useful results had been reported in [4] for
image-domain spatial JND profile, there are two drawbacks
in the approach: only the JND threshold for the luminance
component in an image is considered; integration of dif-
ferent spatial masking effects is simplified as seeking the
maximum value between the visibility thresholds for texture
masking and luminance masking. We believe that mask-
ing effect in chrominance channels should be also exploited

to improve compression or watermarking performance; fur-
thermore, combinative effect of multiple maskings should
take some form of addition (not linear addition though) of
individual factors, in analogy with the saliency effect from
different stimuli in the recent vision research results [6].
Based upon these two ideas, this paper proposes a nonlin-
ear additivity model for masking (NAMM) to enable more
accurate JND calculation towards the actual JND bound ex-
isting in the HVS.

2. NAMM-BASED JND PROFILE WITH COLOR
IMAGES

The proper choice of a suitable color space for HVS-based
manipulations is important. Y CBCR color space is used
in our scheme because it not only facilitates good compres-
sion, but also performs well in prediction of visual distortion
between two colors [7]. In addition, it has been adopted by
the prevalent compression standards, such as JPEG, MPEG
and H.26X.

Let Iθ(x, y) denote the intensity component for a pixel
located at (x, y) for a color channel θ, and θ=Y , Cb, Cr. Our
objective is to determine JNDθ(x,y), the JND value for the
said component, according to the HVS characteristics.

2.1. Nonlinear-additivity model for masking

Simultaneous existence of multiple masking factors in a neigh-
borhood makes targets (e.g., coding artifacts in a decoded
image) more difficult to be noticed, when compared with the
case of one source of masking alone. However, the masking
effects do not add linearly. Thus, the combination of various
masking effects can be mathematically described in the fol-
lowing nonlinear-additivity model for masking (NAMM):

T =

N∑

i=1

T i −

N∑

i=1

N∑

j=i+1

Ci,j · γ(T i, T j) (1)

where T is the visibility threshold due to the overall mask-
ing effect. T i is the visibility threshold due to the individual
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masking stimulus i. Ci,j is the gain reduction factor due
to overlapping between two masking stimuli. γ(·, ·) is an
appropriate nonlinear function.

2.2. JND Profile via NAMM with Color Images

In the spatial domain, there are primarily two factors af-
fecting the JND of each pixel. One is luminance masking,
i.e., human visual perception is sensitive to luminance con-
trast rather than the absolute luminance value. The other
is texture masking, i.e., the reduction of visibility of stim-
uli is caused by the increase in the texture non-uniformity
of the background. As an approximation of the nonlinear
model described in Equation (1), the overall spatial domain
JND, JNDθ(x, y), with combined texture and luminance
masking is given by the addition of the individual masking
components minus the proportion of overlapping effects in
both maskings:

JNDθ(x, y) = T l(x, y) + T t
θ(x, y) −

Clt
θ · min{T l(x, y), T t

θ(x, y)} (2)

where T l(x, y) and T t
θ(x, y) are the visibility thresholds

due to luminance masking and texture masking for a color
channel, respectively; the computation of T l(x, y) follows
the relevant methodology proposed in [4]; the computation
of T t

θ(x, y) will be addressed in the following subsection;
and Clt

θ accounts for the overlapping effect in masking for
a color channel θ. C lt

θ is quantitated as C lt
Y = 0.3, Clt

Cb

= 0.25 and C lt
Cr

= 0.2, and our extensive subjective test-
ing demonstrates that this parameter setting maintains good
image quality while results in good performance for HVS-
based compression.

2.3. Edge-adaptive visibility threshold of textual mask-
ing

The computation of T t
θ(x, y) uses a new method given by

Equation (3). Comparing with the method in [4], our new
method not only considers all three channels in Y CbCr color
space, but also takes the importance of object edges into ac-
count.

In contrast to pixels, edges are directly related to im-
age content in that they demarcate object boundaries, sur-
face crease, reflectance change and other significant visual
events. Moreover, there is a substantial body of literature
attesting to the importance of edges to primate perception
(e.g., [8][9] ). The distortion at edge introduced by image
processing is more visible than that in other texture region.
To shape noise beyond edges, we propose the edge-adaptive
visibility threshold of textual masking as follows:

T t
θ(x, y) = Gθ(x, y) · βθ · Wθ(x, y) (3)

where Gθ(x, y) denotes the maximal weigthed average of
gradients around the pixel at (x, y) and its computation is
described in [10]. βθ is the empirical parameter for each
color channel. βθ = 0.117, 0.65 and 0.45 is determined for
θ = Y , Cb and Cr respectively according to our percep-
tual experiment according to our extensive subjective test-
ing under the viewing condition addressed in the following
Subsection 3.1. Wθ(x, y) is an edge-adaptive weight of the
pixel at (x, y), and its corresponding matrix Wθ is com-
puted by edge detection followed with a Gaussian low-pass
filter:

Wθ = Eθ ∗ h (4)

where Eθ is the edge matrix of the original video frame
for each color component, with element values of ε1 and
ε0 for edge and non-edge pixel respectively. ε1 = 0.1 and
ε0 = 1 is used in this paper. For edge detection, the Canny
method[11] with the sensitivity thresholds of 0.5, 0.175 and
0.175 are used for Y , Cb and Cr respectively in this paper.
h is a k×k Gaussian low pass filter with standard deviation
σ. k = 7 and σ = 0.8 yields good performance for the
images with common size, such as 512 × 512, in the same
subjective testing condition as that of determining βθ.

3. EXPERIMENTAL RESULTS

The proposed model can be tested by comparing an image
Iθ(x, y) with its variation, IJND

θ (x, y), which is formed
via:

IJND
θ (x, y) = Iθ(x, y)+srand(x, y, θ) ·JNDθ(x, y) (5)

where srand(x, y, θ) takes value of either +1 or -1 at ran-
dom regarding x, y and θ, and this is to avoid fixed artifact
patterns introduced to the image. If JNDθ(x,y) determined
in (1) is close to the JND bound in the HVS, it should take
the largest possible value while perceptual distortion in the
image constructed by (5) is minimized.

For comparison purpose, random noise is added to the
same image:

INon−JND
θ (x, y) = Iθ(x, y)+α·srand(x, y, θ)·rand(x, y, θ)

(6)
where rand(x, y, θ) takes a random value in (0.0, 1.0) and
α is a control factor to maintain a similar amount of error
energy (therefore similar PSNR) between IJND

θ (x,y) and
INon−JND
θ (x,y).

The image Lenna (Figure 1(a)) is processed by (5) and
(6), and the results are shown in Figure 1(b) and (c), re-
spectively. With similar PSNR, as can be seen, Figure 1(b)
has much less visual distortion than Figure 1(c). In fact,
human viewers can hardly discern any difference between
the original image and the image modified by the proposed
JND profile, because the proposed JND profile effectively
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Table 1: Comparison of Average PSNR (dB) for 30 Images
Method Average PSNR (dB)

Noise Injection with NAMM 29.04
Random Noise Injection 29.13

Noise Injection with Grey level NAMM 30.37
Noise Injection with Model in [4] 31.44

shapes the added noise to perceptually insensitive regions.
Although the whole full-color image is processed, only the
central part of the image is displayed in Figure 1 for clearer
comparison of the printed versions. Figure 1(d) and (e)
show the results when only JNDY (x,y) is incorporated in
(2) and when the JND derived in [4] for grey level images
is used, respectively, and human viewers rate their visual
quality to be similar (supported by the subjective testing in
the following subsection); this therefore indicates that the
proposed model allows more data redundancy (of 1.35 dB)
for a same picture quality level in grey level image.

The same experiments have been performed for 30 stan-
dard testing color images, most of which can be obtained
from http://www.ipl.rpi.edu/resource/stills/kodak.html. The
results are found to be consistent and the average PSNR is
shown in Table 1.

3.1. The comparative subjective quality assessment

To evaluate the performance of the proposed JND profile
via NAMM with color images in comparison to that in [4],
the comparative subjective quality assessment of the noised
images was performed. For fairness of comparison between
the proposed JND for color image and the JND only for
grey-scale image in [4], the noises are injected into Y com-
ponents in the case of the JND in [4] while the noises are
injected into all Y CbCr components in the case of the pro-
posed JND.

The subjective assessment setup is similar to that in [12].
The associated subjective visual quality assessment was per-
formed in a dark room by 8 subjects (five of them are with
average image processing knowledge and the rest are naive),
using a 21” EIZO T965 professional color monitor in im-
age model with resolution on 1600 × 1200. The viewing
distance is approximately six times of the image height. On
each trial of the experiment, subjects viewed two images of
the same scene (see Figure 2). Subjects were then given
time to vote on the comparative quality of two images [13],
using the continuous quality comparison scale shown in Ta-
ble 2. Subjects were not allowed to respond until after they
had viewed the images for at least two seconds. The order of
presentation of the 30 possible trials (the above-mentioned
testing images) was randomized in each session. On each
trial, which image was presented on which side of the dis-
play was also chosen randomly.

Table 2: Comparison scale for subjective quality evaluation
-3 the left one much worse than the right one
-2 the left one worse than the right one
-1 the left one sightly worse than the right one
0 the same

+1 the left one sightly better than the right one
+2 the left one better than the right one
+3 the left one much better than the right one

Table 3: The comparative subjective quality (“+”: the pro-
posed JND better, “-”: the JND in [4] better.)

Subject index Mean Standard Deviation
1 -0.173 0.888
2 -0.056 0.348
3 -0.130 1.548
4 -0.280 1.160
5 +0.221 1.370
6 -0.019 0.590
7 -0.319 1.005
8 +0.312 2.361

Average -0.055 1.159

The results which show the comparative subjective qual-
ity are listed in Table 3, where Mean and Standard Deviation
are computed over all 30 possible trials. From Table 3, we
can see that the overall comparative subjective quality tends
to a near zero mean of -0.055 with its associated standard
deviation of 1.159. Thus, the subjective quality for the im-
ages noised with the proposed JND profile is very close to
that noised with the JND profile in [4].

4. CONCLUSION

The proposed NAMM scheme provides a more accurate JND
profile towards the actual JND bound in the HVS, since it
is capable of exploiting larger JND values without jeopar-
dizing the visual quality. As indicated in Table 1 (the first
and last rows), it is expected to outperform the approach in
[4] by more than 2 dB (in terms of PSNR) of permitted data
redundancy on an average for a same level of visual quality,
because of the due consideration for the compound mask-
ing effect and full color impacts. Consequently, it enables
better visual compression and watermarking.
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(a)

(b) PSNR: 29.15 dB (c) PSNR: 29.21 dB

(d) PSNR: 31.75 dB (e) PSNR: 33.10 dB

Figure 1: Tests and Comparison for the Proposed NAMM:
(a) Original Image; (b) Noise Injection with NAMM; (c)
Random Noise Injection; (d) Noise Injection with Grey-
level NAMM; (e) Noise Injection with the Model in [4]

Figure 2: Experiment setup for the comparative subjective quality
assessment
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