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Abstract 
The exhaustive histogram matching is usually the most 
computational intensive part for any query in most large image 
database retrieval systems. In this paper, we introduce a histogram-
biasing factor (HBF) to measure the biased-behavior of ordered-
bins in a sorted histogram. The proposed HBF can be used to 
increase the early rejection rate of unreliable or impossible 
candidate reference images based on one of the sorted histograms. 
Moreover, it can be treated as a color-histogram descriptor. Only 
images with very closed HBFs are taken into account, searching 
speed can thus be increased without loss of accuracy. Experimental 
results show that the proposed factor results in up to 13 times 
speedup meanwhile providing the exhaustive retrieval performance. 
 
1. Introduction 
With the daily increasing of digital multimedia content from 
different sources and channels, such as digital pictures and photos 
from scanners and digital cameras, audio or/and video from CDs / 
DVDs, recorders, broadcasting channels and digital libraries on the 
Internet, there is a strong demand on managing and making use of 
such explosion in available content. To have an efficient indexing 
and effective retrieving method for multimedia content, keyword 
annotation [1] is not the best method even though text-based search 
engines work efficiently in today’s Internet and digital libraries. In 
addition, a high-level semantic description perceived from a query 
image usually has a large variation from its corresponding low-
level one, such as color, texture and shape. Among these features, 
color is usually employed in many works [2, 10] in the literature 
since it is the most straightforward information obtainable from an 
image, without or with lesser pre-processing and extra storage. 
 
Color histogram [2] is one of the popular descriptors that 
characterize the color distribution in an image. It has also been 
exploited in various domains, such as DCT or other color spaces 
(HSV, YUV, CIEluv, etc) [3, 4], and is very applicable to content-
based image retrieval (CBIR) system [5, 10], which looks for 
similar or feature-relevant images from a large image database. 
However, the computational cost for matching a query image from 
a large database, which usually includes over hundred thousand of 
images, makes the search severely slowed down even using a 
promising histogram-based algorithm. Recently, some fast 
algorithms [6-8] are proposed to address such problem. In [6], 
Hafner et al. propose to eliminate unnecessary full-resolution 
histogram matching. They employ singular value decomposition 
(SVD) to generalize a low-resolution feature for speeding up the 
exhaustive search. Berman et al. [7] and Song et al. [8] employ the 
concept of triangular inequality and successive elimination 
algorithm [9] to eliminate unnecessary matching operations from 
the search procedures. In addition, Song et al. propose a multi-
resolution approach by using sum pyramid structure of color 

histogram. In [6-8], measurement in lower resolutions is 
advantageous of earlier eliminating of unreliable candidates. 
However, computations are still required to justify even at the 
lowest resolution.  In this paper, a histogram-biasing factor (HBF) 
is proposed as a color-histogram descriptor. It is used for 
identifying either sorted histogram as the distance cumulating 
reference. In addition, it can imply the images in comparison are 
dissimilar if their HBFs are far from each others. Speed is thus 
gained without further investigations. This advantage of avoiding 
inevitable computations can also be gained if full or multi-
resolution approach [6-8] is adopted. 
 
2. Histogram Intersection and Dissimilarity 
A. Histogram Intersection Approach 
Normalized histogram of an image, H(I)={

iI~ }, is acquired from the 
statistical color distribution in particular color space (C) of interest. 
To measure the degree of similarity between two images Q and R, 
their histograms are constructed and intersected I(R, Q) [2] as 
shown below: 
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is very robust as color histograms are independent of geometrical 
content such as translation, rotation, etc, and thus is widely 
employed in color image retrieval applications [10]. Larger value 
of I(R, Q), 0 ≤ I(R, Q) ≤ 1, indicates the two images are more 
similar.  

 
B. Dissimilarity Metric for Sorted Histogram 
In most images, some colors exist much more than the others, 
especially in natural images. Furthermore, not all the colors are 
representatives and perceived or annotated from human beings’ 
point of view. Such dominant and key color concepts are the 
philosophy behind the color-indexed images, such as GIF-coded 
ones, and vector-quantized (VQ) [11] images. For similarity 
measure, comparison using such dominant key-colors in the 
beginning of matching can significantly avoid unnecessary 
computations by early rejection of unreliable candidates. For 
histogram-based method, either histogram is thus sorted with 
dominant colors being compared initially by using dissimilarity or 
distance metric D, instead of using intersected area I. Dissimilarity 
between images R and Q, i.e. D(R, Q), is defined as the total 
differences of every color count as shown below: 
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C. Histogram-biasing Factor 
Typically, the pa
used in encoding 

rtial distance search approach (PDS) [12] widely 
process of VQ can be directly applied to HIM. It 

can reduce the computations required in the full search (FS) 
matching style on every bin of image histograms throughout the 
whole database. Consider the normalized histograms H(X) and H(Y) 
shown in Fig. 2, early rejection exists when partial dissimilarity 
distance Dd(X,Y) cumulated at color bin d in both histograms. It is 
noted that the current minimum dissimilarity distance DMIN is a 
monotonically decreasing function as the search proceeds. In this 
case, the shaded area in gray is assumed just larger than the DMIN, 
i.e. Dd(X,Y) > DMIN. 
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Fig. 1 Dissimilarity of two color histograms. 

If the intersected area I(R, Q) is equal to |H(R)∩H(Q)|, the 
dissimilarity can be regarded as D(R,Q) = |H(R)∪H(Q)| - I(R,Q), 
and 0 ≤ D(R,Q) ≤ 2, as depicted in Fig. 1. In contrast to I, the 
smaller the value D is, the more similar the two images are. Thus, 
the partial sum of dissimilarity D involves many dominant colors 
cumulated in the beginning of every match, and compared against 
the current lowest ranked image’s. Early elimination of unreliable 
candidate images is feasible if the partial sum has been greater than 
the lowest ranked image’s. Therefore, the order of partial sum of D 
is computed based on the descending ordered-bin of either 
histogram acquired from the two images in comparison. 
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Fig.4 Dissimilarity measure using PDS on sorted histograms. 
 
In order to speed up the early rejection rate, one of the histograms 
is sorted, S . The other will be re-arranged by following 

the ordered-bin of the sorted one, and is called followed histogram, 
. They are illustrated in Fig. 3. By sorting the 

histograms based on dominant colors in X, a possible sorted version 
of Fig. 2 is shown in Fig. 4. For the same D
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 is just larger than the DMIN at c-th iteration of distance 

accumulation, where c<d, i.e. D  > D),( Y
X

X
c FS d(X,Y) > DMIN. This 

results in earlier rejection of unreliable candidate. X is a typical 
image histogram but Y contains uniform color distribution, which is 
rarely found in our real world. Fig. 5 shows another image Z with a 
narrow-spread histogram and with smaller variance than X’s. To 
start dissimilarity measure between X and Z, a histogram-biasing 
factor (HBF) is proposed to measure their tendency of colors 
towards the most dominant one (the mode) in their sorted versions. 
The HBF of a sorted histogram S = {Sp} is defined as shown in Eq. 
(3) and normalized between 0 and 1. 

 

1/n

Yic dXic d

Dd(X,Y)

 
Fig. 2 Dissimilarity measure using PDS between image X and Y 
without any histogram sorted for ordering reference. 
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(b) 
Fig. 3(a) Sorted histogram SX of image X. (b) Followed histogram 

 of image Y with bin ordering based on SY
XF X. 
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Fig. 5 Compare X against Z, which has a narrow-spread histogram. 
 
For the two sorted histogram SX and SZ, the one with colors having 
higher tendency or biasing behavior towards the dominant colors 
will be sorted, i.e. HBFZ is smaller. The other will be used as 
followed histogram, i.e. F . Fig. 6 illustrates that image X will 
follow the order of sorted histogram of Z. The partial dissimilarity 
distance is just greater than the D

X
Z

),( X
ZZa FSD MIN at earlier 

ordered-bin a, where a < b, i.e. > D),( X
ZZa FSD b(X,Z) > DMIN. 
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Fig. 6. Dissimilarity measure using PDS with more mode-biased 
sorted histogram as reference. 
 
3. Dominance-biased Partial Distance Search Algorithm 
A. Details of the proposed algorithm 
With the use of the histogram-biasing factor (HBF), dominance-
biased partial distance search algorithm (DBPDS) is proposed. 
After submitting a query from a database with N images {R(j)}, 1 ≤ 
j ≤ N, dissimilarity measure D(R(j), Q) on the query image Q 
against every candidate image R(j) is performed. For each pair of 
comparison, their HBFs are first compared. The one with smaller 
HBF (0 ≤ HBF ≤ 1) will then have its histogram sorted, and 
compared against the other. The sorted histogram is selected as: 

)(
)(

},{
},{

)(

)(
)(

jRQ

jRQ
jR

p

Q
p

HBFHBF
HBFHBF

if
if

S
S

S
>
≤







=    (4) 

and the other one (FS) is re-ordered as following the S’s bins. 
Therefore, partial dissimilarity distance Dp(S, FS) up to p-th ordered 
bin (a particular i-th bin) is accumulated and compared against the 
current minimum dissimilarity distance DMIN. If Dp(S, FS), or 
simply Dp, is greater than the DMIN, the corresponding candidate R(j) 
is unreliable to be the best match. Otherwise, comparison against 
the DMIN continues with inclusion of next (p+1)-th ordered-bin and 
performs until all bins in {Sp} are checked. Therefore, the proposed 
DBPDS can eliminate unreliable candidates without comparing the 
whole histograms. Below summarizes the DBPDS: 
 
Step (1) Set p = 1, j = 1, D0 = 0, and DMIN=BIG_TH. 
Step (2)  If j is not larger than N, identify S and FS from Q and R(j) 

using Eq. (4). 
Step (3) (i)  If p is equal to n, go to Step (4). 

(ii) Else if j is larger than N, go to Step (5). 
(iii) Otherwise, get the corresponding R (or ) of 

the current S
)(~ ji iQ~

p. Compute dp(S, FS) and update Dp(S, 
FS). 
(a) If Dp(S,FS) is larger than the DMIN, matching 

with the current candidate R(j) is stop and this 
candidate is eliminated from the rest of search , 
and then replace p and j respectively with 1 and 
j+1. Repeat Step (2) 

(b) Otherwise, replace p with p+1. Repeat Step (3). 
Step (4) Get the corresponding R (or Q ) of the current S)(~ ji i

~
n. 

Compute Dn(S, FS). 
(i) If Dn(S, FS) is larger than the DMIN, the current 

candidate R(j) is finally eliminated at its last chance. 
(ii) Otherwise, update the DMIN with Dn(S, FS). 
(iii) Go to Step (2) by replacing p and j with 1 and j+1, 

respectively. 
Step (5) Display the best-matched image, which gets the final 

smallest DMIN. 
 
Initially, the minimum dissimilarity distance DMIN can be set to 
infinity, or a threshold (BIG_TH) that is large enough for further 

minimum replacement. In addition, K best matches for Q are 
usually ranked instead of outputting one best match only. Therefore, 
a ranked list of DMIN(k), 1 ≤ k ≤ K, is resulted. To achieve such a 
ranked list, two steps are added to the algorithm. Firstly, 
comparisons are taken against the lowest ranked DMIN(k), 1 ≤ k ≤ K, 
i.e. Step(3)(iii)(a) and Step(4)(i). Secondly, the ranked list DMIN(k) 
is updated by inserting the newly DMIN(k+1) to proper location in 
an ascending manner of minimum distances, i.e. Step(4)(ii). Such 
update of ranking can be accomplished by using any sorting 
algorithm [13], such as insertion sort, or quick sort, etc. 
 
B. Further speed improvement 
As partial distance search (PDS) approach, with or without any 
histogram sorted, results in the same ranked similar images with the 
same minimum distances as using full search (FS) approach. This 
can be regarded as lossless retrieval. The proposed DBPDS can be 
adjusted to provide faster matching speed meanwhile without loss 
of retrieval result. This can be achieved by ignoring the 
dissimilarity measurement on images R(j), whose HBFs are far 
away from the query one’s. In other words, the search firstly 
compares the two HBFs of images in comparison and continues if 
the difference between HBFs is within a particular allowable 
matching range (AMR), otherwise, the current reference image is 
treated as impossible and eliminated. This approach may introduce 
a lossy version of different ranked images as compared to FS. 
  
C. Practical implementation and extra storage analysis 
In DBPDS, the candidate images with their histograms, their HBFs 
and sorted histograms are computed beforehand and stored 
associatively in the database. For sorted histograms, the 
comparison requirement when using quick sort is about 2n(ln(n)) 
operations in average case, where ln denotes natural log. 
Nevertheless, sorting of n-color images’ histograms is an offline 
batch job and does not affect the efficiency of a query. The extra 
storage requirement of DBPDS is just double the size of lookup-
table of n entries of counts; typically each entry requires a double 
floating-point type (for bins) and a long integer type (for ordering). 
This is equivalent to about (8+4)n+8 bytes or about 3KBytes, for a 
256-color image. 
 
4. Experimental Results 
In our simulations, a database of N=1,000 JPEG images [14] is 
divided into 10 different categories, for example, dinosaur, African, 
etc. For each category, it consists of NR=100 images. The proposed 
DBPDS approach is compared with the (1) FS approach, and (2) 
PDS approach without any histogram sorted. To evaluate the speed 
improvement ratio, the number of operations, such as additions, 
absolutions and comparisons, are compared. All approaches (App.) 
employ the same sorting algorithm, such as quick sort, to generate 
the top K=10 ranked images. 
 
The bin size is set to n and 4n for two color domains, and results in 
two luminance 256-bin (256Y) and 1024-bin (1024Y) histogram 
matching and one 256-bin (256C) color histogram matching. The 
retrieval performance is measured by Precision and Recall [15], 
and early rejection rate (RR), as shown below: 

retrieved images of no. Total
retrieved imagesrelevant  of No.

=precision  , (5) 

databasein   imagerelevant   of no. Total
retrieved imagesrelevant   of No.

=recall  , and (6) 
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where Comp(FastX) is the total number of partial dissimilarity 
comparisons against the DMIN using fast method FastX. Relevant 
images are referred to images in the same category. Precision (Pcn) 
measures the hit-ratio that retrieved images fall in the same 
category while recall (Rcl) measures the capability of finding 
images of the same category inside the database. Below summarize 
two queries using picture 025 (African) and 285 (scenery). 
 
Bin/C App. Operations RR(%) Speed Pcn Rcl 

FS 768000 0 1 1.0 0.10 
PDS 309889 69.64 2.48 1.0 0.10 

DBPDS 187129 81.63 4.10 1.0 0.10 
DBPDS(0.040) 61100 94.02 12.57 1.0 0.10 
DBPDS(0.039) 64689 93.68 11.87 0.9 0.09 

256Y 

DBPDS(0.021) 43253 95.77 17.76 0.7 0.07 
FS 3072000 0 1 1.0 0.10 

PDS 1465660 64.19 2.10 1.0 0.10 
DBPDS 811352 80.17 3.79 1.0 0.10 

DBPDS(0.028) 246799 93.97 12.45 1.0 0.10 
DBPDS(0.027) 258664 93.68 11.88 0.9 0.09 

1024Y 

DBPDS(0.01) 64579 98.42 47.47 0.7 0.07 
FS 2304000 0 1 1.0 0.10 

PDS 1033953 66.26 2.23 1.0 0.10 
DBPDS 955145 68.83 2.41 1.0 0.10 

DBPDS(0.077) 245633 92.00 9.38 1.0 0.10 
DBPDS(0.076) 254433 91.71 9.05 0.9 0.09 

256C 

DBPDS(0.050) 175120 94.30 13.16 0.7 0.07 
Table I. Performance on query picture 025 (African). 
 
Bin/C App. Operations RR(%) Speed Pcn Rcl 

FS 768000 0 1 0.6 0.06 
PDS 532452 47.91 1.44 0.6 0.06 

DBPDS 320340 68.63 2.40 0.6 0.06 
DBPDS(0.026) 96862 90.53 7.93 0.6 0.06 
DBPDS(0.025) 92845 90.92 8.27 0.5 0.05 

256Y 

DBPDS(0.011) 8192 99.20 93.75 0.5 0.05 
FS 3072000 0 1 0.5 0.05 

PDS 2368983 42.14 1.30 0.5 0.05 
DBPDS 1544335 62.27 1.99 0.5 0.05 

DBPDS(0.018) 401409 90.20 7.65 0.5 0.05 
DBPDS(0.017) 387418 90.54 7.93 0.4 0.04 

1024Y 

DBPDS(0.008) 214733 94.76 14.31 0.3 0.03 
FS 2304000 0 1 0.7 0.07 

PDS 1825291 40.53 1.26 0.7 0.07 
DBPDS 1724711 43.80 1.34 0.7 0.07 

DBPDS(0.086) 561465 81.72 4.10 0.7 0.07 
DBPDS(0.075) 479498 84.39 4.81 0.6 0.06 

256C 

DBPDS(0.050) 298180 90.29 7.73 0.4 0.04 
Table II. Performance on query picture 285 (scenery). 
 
From Table I-II, the proposed DBPDS algorithm achieves the same 
retrieval results as using FS approach in both Precision and Recall. 
It results in up to 4.10 times faster than using FS’s. DBPDS(AMR) 
can even achieve much faster matching speed at different allowable 
matching range. They are about 3-5 times of its original DBPDS’s 
(i.e. AMR=1.0). For example, DBPDS(0.028) is 12.45 times while 
DBPDS is 3.79 times for 1024-bin luminance histogram-based 
matching, i.e. >4 times. When the allowable range is reduced to a 

very small value, precision and recall rate will drop and traded for 
much faster matching speed. 
 

5. Conclusion 
A novel histogram-biasing factor (HBF) is proposed to measure the 
biasing-behavior of colors towards the dominant colors in sorted 
histograms. A dominance-biased partial distance search (DBPDS) 
is also proposed by selecting image with smaller HBFs as the 
sorted histogram for the computation order of distance 
accumulation in partial distance search. In addition, matching can 
also be limited to images with HBFs very closed. Experimental 
result shows that the DBPDS can achieve the same retrieval results 
for a query as in full search meanwhile providing up to 13 times 
speed improvement. 
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