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ABSTRACT

We propose a hew feature dimension reduction method for
multimedia search. The main technique in the method is dy-
namic segmentation that partitions sequential feature trajec-
tories dynamically. While dynamic segmentation reduces
the average dimensionality and accelerates the search, it
requires huge amount of calculation. Thus, our method
quickly executes suboptimal partitioning of the trajectories
by using the discreteness of dimension changes. This guar-
antees the optimal amount of calculation to derive the sub-
optimal partitioning under the condition that the dimension
monotonously increases as the segment length increases.
The experiment shows that our method is over 10 times
faster than a strai ghtforward dynamic segmentation method.

1. INTRODUCTION

This paper discussesfeature dimension reduction for aquick
audio/video search. One of the applications we have specif-
icaly in mind isto detect and locate a known audio or video
signal (areference signal or a query) in along multimedia
signal stream (a stored signal or a database) based on sig-
nal similarity. We call this audio/video search. A mgjor
research issue in this approach is speed. Specifically, fea-
tures for audio/video signals tend to be high-dimensional,
which is not necessarily suitable for the various tree-search
algorithms devel oped in the database field [1, 2].

In coping with the high-dimensionality problem, it is
natura to think of dimension reduction. Previously, we pro-
posed a quick and accurate search algorithm for multime-
dia signals based on dimension reduction [3]. The main
techniques in the algorithm are piecewise linear representa-
tion of sequential feature trajectories (called segment-based
PCA) and efficient pruning of the search space (called dis-
tance bounding). In the dimension reduction technique,
segment-based PCA was carried out by dividing trajectories
into equal-length segments and doing KL transform in ev-
ery segment. However, it is expected that allowing the seg-
ments to have variable lengths would improve dimension
reduction performance.

Here, we introduce dynamic segmentation. Dynamic
segmentation refers to partitioning feature trajectories dy-
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namically so asto minimizethe average dimensionality. How-
ever, finding optimal partitioning requires a huge amount
of calculation (e.g. [4]). Thus, our technique addresses
quick suboptimal partitioning of the trajectories by modify-
ing the formulation of dynamic segmentation and using the
discreteness of dimension changes. It a so achievestheoreti-
cal optimality in the amount of calculation to derive the sub-
optimal partitioning under the condition that the dimension
monotonously increases as the segment length increases.

Most of the related works also utilize a suboptimal ap-
proach. For example, Keogh et al. [5] used a bottom-up
merging of segments. Wang et al. [6] tested alinefitting ap-
proach, namely, finding the longest line segment such that
the approximation error does not exceed the given thresh-
old. Keogh et al. [7] aso reported a conversion of the prob-
lem into awavelet decomposition problem. Although these
methods are useful for low-dimensional time-series, such as
fluctuation of stock pricesand seismic data, it isnot straight-
forward to apply them to high-dimensional trajectories.

This paper isorganized asfollows: Section 2 overviews
the search algorithm and our previous method [3]. Section
3 explains the dimension reduction method, the core part
of our new algorithm. Section 4 evaluates the performance
of the algorithm using a recording of real TV broadcasting.
Finally, Section 5 gives conclusions.

2. SEARCH ALGORITHM

Fig. 1 outlines the search method [3]. This method is based
on Time-series Active Search, which we proposed earlier
[8].

In the preparation stage, the basic features are calcu-
lated from the stored signal. For example, sets of normal-
ized short-time power spectra are used as features for audio
signals, and sets of average RGB values in subimages are
used as video features. The basic features are then quan-
tized by using a vector quantization (V Q) algorithm. Then,
the windows are applied to the basic feature sequence, and
histograms are created by counting the number of the basic
features over the window for each VQ codeword. The his-
tograms are compressed by the dimension reduction method
as described later. The compressed features, the final form
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Fig. 1. Overview of the search method

of the signal features, comprise the mapped histogram and
the mapping distance. The mapping distance meansthe dis-
tance between the corresponding histograms before and af -
ter the compression.

Inthe search stage, acompressed featureis created from
the reference signal in the same way that one is created
from the stored signal. Next, the compressed reference fea-
ture and the stored one corresponding to the matching point
are matched. In the matching, the distance between these
compressed features is calculated. Although the distance
measure can be determined in severd ways, here we use
L»-distance (Euclid distance) d(-, -). The distance between
compressed features, v, , y,, givesalower bound of thedis-
tance between the original histograms, x, x»:

{da(y1,92)}° = {da(g(z1),9(x2))}”
+{do (1, g(21)) — da(22, g(22))}?
min{d2(:l:1,:c2)}2

)

where ¢(-) is a function for dimension reduction, and the
minimum is taken over al (x,x2) given g(x1), g(x2),
da(x1, g(x1)) and da (a2, g(x2)). If the distance between
compressed features falls below a given value (a search
threshold), then the high-dimensional original histograms
arematched. If the distance between the original histograms
falls below the search threshold again, the reference signal
is determined to be detected. In the last step, the window on
the stored signal is shifted forward in time and the search
proceeds.

When the distance is calculated for one segment, the
feature matching for the following segments can be skipped
if the lower bound of the distance, which can be calculated
from the current segment distance, is not smaller than the
search threshold. The use of the lower bound guarantees
that no segment to be detected is missed by the skipping.
The skip width w is given by

w— { |V2D(ds — 61)] +1  (if d2 > 6:)
L (otherwise)
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Fig. 2. Overview of Dynamic Segmentation

L the total number of frames contained
in the stored signal
M the number of segments
o the given contribution rate
t; the frame number on the right boundary

of the j-th segment
(]:1,2,,M)

t2 the initial value of ¢;

t; the value of ¢; to be found

A the width of shiftable range of boundary
c(ti,tj, o) | theminimum number of components

on the segment (¢;, ¢;) such that
the contribution rate exceeds o

Table 1. Notations

where |z| means the greatest integer less than z, dy =
d>(y4,y-), and 8 isthe search threshold.

3. DIMENSION REDUCTION METHOD

3.1. Outline

Here we note that histogram sequence is “continuous’ by
nature in the histogram space, and introduce the piecewise
linear representation of the sequential histogram trajectory
with variable length of segments.

Firstly, atrajectory is divided into a certain number (e.g.
1000) of equal-length segments. Next, dynamic segmenta-
tion is performed. It determines the segment boundaries,
given a shiftable range of boundaries, so asto minimize the
average dimensionality per frame. Then, KL transform is
performed for each segment, and functions for the dimen-
sion reduction are determined with the minimal number of
components such that the contribution rate exceeds a certain
predetermined value. Lastly, histograms from the stored
signa are transformed by their corresponding function.

3.2. Formulation of Dynamic Segmentation

Refer to Table 1 for mathematical notations. Dynamic seg-
mentation can be formulated by using the framework of Dy-
namic Programming (DP). DP enables us to obtain the op-
timal boundaries. However in this case, DP is not practical
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because it requires a huge amount of calculation, yet less
than naive dynamic segmentation. The total number of cal-
culationsis evaluated as follows:

(M —2)(2A +1)> +2(2A + 1) = O(MA?).
Therefore, we formulate dynamic segmentation in an-
other way so as to get boundarieswith Ieﬁ calculation. The
position of the boundary to be found, ¢ *, is obtained by us-
ing the following forward recursion.

t; = arg min
t:t9—A<t; <tI+A

C(t;—lvtjvo-) + (tj’tj-‘rl’ )
tp—ti_, ., -t [’

Jj+1

l ] ’

where
ty=0,ty =1L,

. L .

and [z] means the smallest integer greater than = (See Fig.
2). Thisformulation means that the positions of boundaries
are determined in order of time. In this formulation, the
total number of calculationsis evaluated as

2(M —1)(2A +1) = O(MA).

We measured the relationship between the degree of di-
mension reduction and the width of the shiftable range. In
the experiment, we used histograms with 256 dimensions
created from avideo recording of a TV broadcast. There-
sults are shown in Fig. 3, where the horizontal axis is the
width of the shiftable range of the boundary and the ver-
tical axis expresses the ratio of the average number of di-
mensions of the mapped histograms to the one without dy-
namic segmentation. The contribution and segment setting
are shown in the inset. The data indicate that the average
dimensionality of the features monotonically decreases as
the width of the shiftable range increases. For example,
the average number of dimensions decreasesto 88.2% when
the contribution rate is 0.75 and the number of segmentsis
1000.

z half of the number of calculationsin the stage 2
f(z) | thetotal number of calculations given z

K the number of portions where the change of
dimensionality occurs

Table 2. Notations

3.3. Speed-up Method

The formulation in 3.2 gives suboptimal segmentation of
feature trgjectory in the sense of dimensionality. However,
thisformulation still requireslarge amount of computations,
yet less than DP. Here, we note that the change of dimen-
sionality is continuous but discrete. Therefore, the optimal
positions of segment boundaries must exist at the changing
points of dimensions or at the edges of the shiftable range.

From the above discussion, we propose a speed-up
method for dynamic segmentation based on a coarse-to-fine
approach. First, dimensions of the segments are cal culated
at theinitial position and at the edges of the shiftable range
(stage 1). Next, dimensions are calculated roughly in the
shiftable range of segment boundary (stage 2). The number
of calculation is estimated from the result of the stage 1.
Then, dimensions are calculated in detail only in the portion
where the change of dimensionality occurs (stage 3).

The problem here is how to determine the number of
calculation in the stage 2. We can theoretically determine
the optimal number of calculations. To do this, we set one
assumption: the dimension monotonously increases as the
segment length increases.

We again define some notations as in Table 2. Suppose
that calculations are performed at the even intervals in the
stage 2. Then, f(z) isgiven asfollows:

flx)= 2{(21‘+3) +Ka:i+1}’

where the first term refers to the number of calculationsin
the stages 1 and 2, and the second term refers to that in the
stage 3. K isgiven asfollows:

,

= Crr—Cr1, itCrLr <Cgrgr,Crr, <Cgr
< 2min(Cre,CrLr) — (Crr + Crr)
> (Cre—Crr)+|Crc — CrR|
K if Crr > Crr,Crr < Cgrr,Crc < Cre
< 2min(Cre,Cri) — (Crr + Crr)
> (Crc — Crr) +|Crc — Cri]
if CLr > Cgrr,CLr < CgL,Crc > Cre
L = 0 Otherwise
where
Crr = C(tj 1t ] -A 0) Crr = C( A7t2+17 )
CLO_C(t 1,6 ) Crc _C(t t+1, )
CLR:C(t] 1,tj+A o), CRR:C(t + A, 19 4110 o).

Therefore, the average number of the dimensionality changes,
K, isevauated as

K =
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Fig. 4. Performance of the proposed method (1000 seg-

ments, contribution=0.75)

Crr—Crr ifCLr < Crr,Cr1 < Crr

(Cre — Crr) + min(Cre, Crr) — min(Cre, Crr)
it Cor > Crr,Crr < Crr,Crc < Cgre

(Crc — Crr) + min(Cre, Crr) — min(Cre, Crr)
if Cor > Crr,CrLr < Crr,Crc > Cre

0. Otherwise

The f(z) takestheminimum, 4vV2KA+1 = O(VKA),

whenz = /2 KA — 1. Then, the total number of calcula-
tionsis evaluated as

M (4\/QFA n 1) —0 (M\/F—A) .

4. EXPERIMENTS

We carried out experiments to ascertain the performance of
the speed-up method.

In the experiments, we used a video recording of a 24-
hour TV broadcast as a stored signal. The frame rate was
29.97 Hz, and image size was 320 x 240 pixels. The tests
were carried out on a PC. In the feature extraction, each
framewasfirst dividedinto 6 (2 x 3) areas, and then the aver-
age of RGB-values was calculated for each area. Therefore,
the number of dimensions of the original feature vector was
18. Those feature vectors were calculated on every frame,
and then quantized. The codebook size for the feature vec-
tors was 256. Then, histograms of the feature vectors were
created. The histogram feature dimension was therefore 256
before compression. Those parameter values were empiri-
cally chosen.

Figure 4 shows the number of calculations in searching
for optimal boundaries of the segments, where the horizon-
tal axisis the width of the shiftable range and the vertical
axis is the number of calculation. The proposed method
is over 10 times faster than the one that does not employ
speed-up technique when the number of segments is 1000,
the contribution rate is 0.75, and the width of the shiftable
rangeis 500.

5. CONCLUSIONS

We have proposed a quick and efficient dimension reduction
method for multimedia search based on dynamic segmenta-
tion. A speed-up technique based on a coarse-to-fine ap-
proach achieves quick finding of suboptimal segmentation
based on theoretical determination of the optimal number
of calculation. In our experiment, the algorithm was over
10 times faster than a straightforward dynamic segmenta-
tion method in terms of the number of calculation when the
number of segments is 1000, the contribution rate is 0.75,
and the width of shiftable range is 500. Due to space lim-
itations, we discussed a video example in the experiments
section. The application to audio signal will be reported in
aseparate paper. Futurework will include further investiga
tion of the optimal decision of the segments.
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