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ABSTRACT class of models uses hidden Markov trees to model the joint

We introduce Gaussian mixture models of ‘structure’ and statistics of wavelet coefficients [4, 5, 6]. In [4, 5, 7], an
colour features in order to classify coloured textures in im- independent mixture model (IMM) in the wavelet domain
ages, with a view to the retrieval of textured colour im- is introduced. This model bears some similarities to the
ages from databases. Classifications are performed sepd>MM proposed in this paper, since it employs a mixture
rately using structure and colour and then combined usingof Gaussians, but in the IMM each wavelet feature is mod-
a confidence criterion. We apply the models to the VisTex €lled separately by a mixture of models, and it is assumed
database and to the classification of man-made and naturaihat the features are independent. In the GMM framework

areas in aerial images. We compare these models with othadopted in this paper, no independence assumption about
ers in the literature, and show an overall improvement in the features is made. The performance of the IMM-based

performance. classification was evaluated in [4, 5, 7], using the wavelet
coefficients at each pixel as features.

1. INTRODUCTION
2. GMMS FOR TEXTURE CLASSIFICATION

In many domains of image processing, there is a strong cor-
respondence between entities in the scene and textures (bWe introduce our classification model, describe Gaussian
texture, we mean both what we will later call ‘structure’ mixture models and motivate their use. We assume that we
information, and colour information) in the image. Thisim- are dealing withV texture classes, labelled by ¢ N =
plies that the ability to classify these textures can furnish {1,..., N}, corresponding to different entities.
important semantic information about the scene. Conse-
quently, the problems of texture description and classifica-
tion, and the closely related problem of segmentation, have
received considerable attention, with numerous approachesSince texture is not a local phenomenon, in order to classify
being proposed (see,g, [1] and references therein). In a pixel one must take into account a neighbourhood of that
particular, in the field of content-based image retrieval, the pixel. We will compute features from, and assign classes
ability to answer the question: “Is there a significant amount to, S x S subimages called ‘blocks’. The set of blocks is
of such-and-such texture in this image?”, can be the basisdenotedB. We define the neighbourhodd(b) of a block
for many types of query. b, called a ‘patch’, to be the set of blocks in a largex T'

One approach to characterizing textures is to use statisti-subimage with at its centre. We denote by, the data
cal models. Many kinds of statistical models have been ap-associated to block, and by, € N the classification of
plied to texture classification, but the closest to the modelsb. Given the likelihood of the data in a block given its class,
proposed in this paper are those based on various Markowr(Dy|v;), we use the following classification rule:
models. Motivated by the desire to incorporate contextual
information, Li and Gray [2] proposed a 2D HMM for im- Vp = arg max H Pr(Dy vy =n) Q)
age classification. A somewhat different model is the non- neN b eP(b)
causal HMM described in [3]. Another recently popular

2.1. Classification model

This says: “Assign to a blockthat class: which, if all the

*This work was supported by European project MOUMIR, HP-99-108 blocks inP(b) had class:, would maximize the probability
(www.moumir.org ). The authors would also like to thank Professors ’

R. Gray and J. Li for permission to use the aerial images contained in this Of the data _inP(b)” (we assume con(_jitional indepe_ndence
paper. of the data in the blocks in a patch given the classification).
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The effect of this classification rule is similar to that of a ensuring that the initialisation is the same for all classes and
Potts prior, in that it encourages spatial homogeneity of the not biased towards any one. Second, the BKG model is used
classification. Its advantage is that it is not necessary to con-as a ‘no decision’ class. If the BKG model is more likely
sider the classifications of neighbouring blocks in making a than any of the individual classes, then no decision is made.
classification decision. This reduces computation time con-

siderably. 3. FEATURE EXTRACTION

2.2. Gaussian mixture models We must choose sizes for a block and a patch. For segmen-
tation, there is a trade-off between our ability to discrimi-

The dataD, associated to each block will be a vector of 46 (lasses and the accuracy of boundary estimation. How-
features, denoted We must choose, for each texture class, oyer for retrieval purposes, the accuracy of texture bound-

a probability distribution that represents the feature statis- aries is not such a big issue. We choose a block size of
tics of a block of that class. We will use Gaussian mixture ¢ _ 14 gince this seems large enough to capture a reason-
models_ for this gurpose. Thus,_ for a given texture_z Cla_lss, thegple sample of the largest structures in the textures in the
probablllty thatr b_e_ observed is a convex combination of images with which we are dealing. Choosing patch size is
M Gaussian densities: equivalent to choosing a degree of smoothing for the classi-
M fications: there is a tendency for blocks near the centre of a

P(&|{p;, i, 2i}) = Zpib(@ i 3i) ) given patch to be assigned the same'class, since their corre-

=1 sponding patches have many blocks in common. We choose

) ) ) square patches containing nine blocks.
whereb(Z, i, X)) is a Gaussian of meafi and covariance

Y. The parameters for a given class are thps i;, X;]i €
M}.

It is clear that modelling a texture class with a GMM  Structure features are designed to capture spatial regularity
rather than a single Gaussian gives a great deal of adde@f the texture over the block. We extract structure informa-
flexibility to the model. Indeed, if one is allowed an arbi- tion from the intensity images alone. We compared several
trary number of components, any continuous density func- sets of features for this purpose: the energies in different
tion can be approximated to any desired accuracy. A GMM wavelet subbands for both Haar and Daubechies wavelets;
is also the natural model to use if a texture class contains aAR models of different orders; and the energies of DCT
number of distinct subclasses, as is often the case (for excoefficients in regions of frequency space corresponding to

3.1. Structure Features

ample, forest texture in an aerial image). a wavelet decomposition. We found in practice that the
wavelet-like DCT and the Haar wavelet features performed
2.3. Parameter estimation for GMMs best, although only the AR models did significantly worse.

The DCT is computationally the most efficient however, and

To apply the above classification procedure, we must learnye chose these energies as our structure features.
the parameters of the GMM models. Given a training set

consisting of the data frorit’ blocks of a particular texture
class,X = {#|t € T}, we would like to estimate the pa-
rameters of the Gaussian mixture density using a maximumcColour provides an extremely powerful cue for the distin-
likelihood estimator. Fortunately, maximum likelihood pa- guishing of different entities in the scene. As colour fea-
rameter estimation for a GMM can be solved using the EM tures, we used the mean RGB values over a block and the
algorithm [8], or by using:-means. Lack of space prevents data covariance of the RGB values over a block. Since the
an exposition of these algorithms here, but note that the up-covariance matrix is symmetric, only half of it, including the

3.2. Colour features

date steps for GMMs are expressible in closed form. diagonal, is included in the feature vector. The colour fea-
ture vector is thus &-dimensional vector3 coming from
2.4. The BKG model the mean and from the covariance.

In addition to the texture classes that we wish to classify, we
introduce also the background (‘BKG’) class. Its parame-
ters are learned from the blocks in the union of the training We combine the colour and texture models in the following
sets of each class, tHemeans algorithm being used be- way. For each block, and for both structure and colour fea-
cause of its faster convergence properties on large amountsures, we compute the right hand side of equation 1 for all
of data. The BKG model has two roles. First, it is used to classes. Let,(b) andn.(b) be the maximizing and next-to-

initialise the training of the individual texture models, thus maximizing classes for block We define the ‘confidence’

3.3. Combining colour and structure
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Fig. 1.

Textures from the Vistex Database:
Bark12; FabricO; Fabric4; Fabric7; Fabric8; Fabricll; Fab-
ric13; Fabricl5; Fabricl7; Fabric19; flowers0; Food.0000;
Leaves12; Grass1; CloudsO; BrickO; Wood?2; waterO; Tile7;
Stone4; Sand.0000; Misc2; MetalO.

BarkO;

of the classification decision taken as:
C(b) = Pr(Dy|lvy = n1(b))/ Pr(Dplvy = na(b))  (3)

If the classifications resulting from using the structure fea-
tures and the colour features conflict, we choose the deci-
sion with the highest confidence.

4. EXPERIMENTAL RESULTS

The experiments in this section were conducted on the MIT

Texture Colour Structure Both
Bark0 100 99 100
Bark12 93 73 92
FabricO 100 96 100
Fabric4 82 100 100
Fabric7 96 100 100
Fabric8 99 94 98
Fabricll 100 86 100
Fabricl3 94 98 100
Fabricl5 100 98 100
Fabricl7 92 98 99
Fabricl19 99 99 100
Flowers0 100 96 99
FoodO 100 96 100
Leavesl12 19 99 94
Grassl 81 88 92
CloudsO 100 100 100
Brick0 100 99 100
Wood?2 88 98 99
Water0 36 43 44
Tile7 56 94 86
Stone4 87 96 94
Sand0 100 96 100
Misc2 99 96 100
MetalO 97 94 96
Avg. Colour | Avg. Texture | Avg. Both
88.3 93.2 95.6

Table 1. VisTex results

Vision Texture (VisTex) database, and on the aerial images4.2. Aerial images

of the San Francisco Bay area that were used in [9, 2, 10,
11].

This database includes sbi2 x 512 grey-scale images.

There exist also manual segmentations of the images into
man-made and natural areas. We use these segmentations
as ground truth. The images are displayed in Figure 2.
We chose randomlg4, 512 x 512 textured colour images We used this database for evaluation exactly as it was
from the Vistex database. The textures are displayed inused in [9, 2]. For each iteration, one image was used as
figure 1. Each image was divided into subimages of size test data, and the other five were used as training data. Per-
32 x 32 pixels. All blocks extracted from the fir6 subim- formance is evaluated by averaging over all iterations. Each
ages of each texture were used for training, while the re-class (‘man-made’ and ‘natural’) was modelled by a five-
maining160 subimages were used for testing. component GMM of the structure features. For initializa-
For each class we trained a GMM with five components tion we used the BKG model.
using30 iterations of the EM algorithm. We chose five com- The results from the GMM algorithm were compared to
ponents because increasing the number of components dithe results from other statistical models reported in [2, 9]:
not improve the results significantly. We usg@literations the 2D HMM (two-dimensional hidden Markov model) [2];
for a similar reason: the EM algorithm appeared to have the 2D MHMM (two-dimensional multi-resolution hidden
converged after this number of iterations. We used the sameMarkov model) [9]; CART (a decision tree algorithm) [12];
initialization for each texture class: the BKG model. The and LVQ1 (versionl of Kohonen'’s learning vector quan-
results of the classification using the colour features, thetization) [13]. The classification error rates for each test
structure features and the combined decision are shown inmage in the six-fold cross-validation and the average error
table 1. rates are listed in table 2.

4.1. Vistex texture database
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