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ABSTRACT
We introduce Gaussian mixture models of ‘structure’ and
colour features in order to classify coloured textures in im-
ages, with a view to the retrieval of textured colour im-
ages from databases. Classifications are performed sepa-
rately using structure and colour and then combined using
a confidence criterion. We apply the models to the VisTex
database and to the classification of man-made and natural
areas in aerial images. We compare these models with oth-
ers in the literature, and show an overall improvement in
performance.

1. INTRODUCTION

In many domains of image processing, there is a strong cor-
respondence between entities in the scene and textures (by
texture, we mean both what we will later call ‘structure’
information, and colour information) in the image. This im-
plies that the ability to classify these textures can furnish
important semantic information about the scene. Conse-
quently, the problems of texture description and classifica-
tion, and the closely related problem of segmentation, have
received considerable attention, with numerous approaches
being proposed (see,e.g., [1] and references therein). In
particular, in the field of content-based image retrieval, the
ability to answer the question: “Is there a significant amount
of such-and-such texture in this image?”, can be the basis
for many types of query.

One approach to characterizing textures is to use statisti-
cal models. Many kinds of statistical models have been ap-
plied to texture classification, but the closest to the models
proposed in this paper are those based on various Markov
models. Motivated by the desire to incorporate contextual
information, Li and Gray [2] proposed a 2D HMM for im-
age classification. A somewhat different model is the non-
causal HMM described in [3]. Another recently popular
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class of models uses hidden Markov trees to model the joint
statistics of wavelet coefficients [4, 5, 6]. In [4, 5, 7], an
independent mixture model (IMM) in the wavelet domain
is introduced. This model bears some similarities to the
GMM proposed in this paper, since it employs a mixture
of Gaussians, but in the IMM each wavelet feature is mod-
elled separately by a mixture of models, and it is assumed
that the features are independent. In the GMM framework
adopted in this paper, no independence assumption about
the features is made. The performance of the IMM-based
classification was evaluated in [4, 5, 7], using the wavelet
coefficients at each pixel as features.

2. GMMS FOR TEXTURE CLASSIFICATION

We introduce our classification model, describe Gaussian
mixture models and motivate their use. We assume that we
are dealing withN texture classes, labelled byn ∈ N ∼=
{1, . . . , N}, corresponding to different entities.

2.1. Classification model

Since texture is not a local phenomenon, in order to classify
a pixel one must take into account a neighbourhood of that
pixel. We will compute features from, and assign classes
to, S × S subimages called ‘blocks’. The set of blocks is
denotedB. We define the neighbourhoodP (b) of a block
b, called a ‘patch’, to be the set of blocks in a largerT × T
subimage withb at its centre. We denote byDb the data
associated to blockb, and byνb ∈ N the classification of
b. Given the likelihood of the data in a block given its class,
Pr(Db|νb), we use the following classification rule:

νb = arg max
n∈N

∏
b′∈P (b)

Pr(Db′ |νb′ = n) (1)

This says: “Assign to a blockb that classn which, if all the
blocks inP (b) had classn, would maximize the probability
of the data inP (b)” (we assume conditional independence
of the data in the blocks in a patch given the classification).
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The effect of this classification rule is similar to that of a
Potts prior, in that it encourages spatial homogeneity of the
classification. Its advantage is that it is not necessary to con-
sider the classifications of neighbouring blocks in making a
classification decision. This reduces computation time con-
siderably.

2.2. Gaussian mixture models

The dataDb associated to each block will be a vector of
features, denoted~x. We must choose, for each texture class,
a probability distribution that represents the feature statis-
tics of a block of that class. We will use Gaussian mixture
models for this purpose. Thus, for a given texture class, the
probability that~x be observed is a convex combination of
M Gaussian densities:

P (~x|{pi, ~µi,Σi}) =
M∑
i=1

pib(~x, ~µi,Σi) (2)

whereb(~x, ~µ,Σ) is a Gaussian of mean~µ and covariance
Σ. The parameters for a given class are thus{pi, ~µi,Σi|i ∈
M}.

It is clear that modelling a texture class with a GMM
rather than a single Gaussian gives a great deal of added
flexibility to the model. Indeed, if one is allowed an arbi-
trary number of components, any continuous density func-
tion can be approximated to any desired accuracy. A GMM
is also the natural model to use if a texture class contains a
number of distinct subclasses, as is often the case (for ex-
ample, forest texture in an aerial image).

2.3. Parameter estimation for GMMs

To apply the above classification procedure, we must learn
the parameters of the GMM models. Given a training set
consisting of the data fromT blocks of a particular texture
class,X = {~xt|t ∈ T}, we would like to estimate the pa-
rameters of the Gaussian mixture density using a maximum
likelihood estimator. Fortunately, maximum likelihood pa-
rameter estimation for a GMM can be solved using the EM
algorithm [8], or by usingk-means. Lack of space prevents
an exposition of these algorithms here, but note that the up-
date steps for GMMs are expressible in closed form.

2.4. The BKG model

In addition to the texture classes that we wish to classify, we
introduce also the background (‘BKG’) class. Its parame-
ters are learned from the blocks in the union of the training
sets of each class, thek-means algorithm being used be-
cause of its faster convergence properties on large amounts
of data. The BKG model has two roles. First, it is used to
initialise the training of the individual texture models, thus

ensuring that the initialisation is the same for all classes and
not biased towards any one. Second, the BKG model is used
as a ‘no decision’ class. If the BKG model is more likely
than any of the individual classes, then no decision is made.

3. FEATURE EXTRACTION

We must choose sizes for a block and a patch. For segmen-
tation, there is a trade-off between our ability to discrimi-
nate classes and the accuracy of boundary estimation. How-
ever, for retrieval purposes, the accuracy of texture bound-
aries is not such a big issue. We choose a block size of
S = 16, since this seems large enough to capture a reason-
able sample of the largest structures in the textures in the
images with which we are dealing. Choosing patch size is
equivalent to choosing a degree of smoothing for the classi-
fications: there is a tendency for blocks near the centre of a
given patch to be assigned the same class, since their corre-
sponding patches have many blocks in common. We choose
square patches containing nine blocks.

3.1. Structure Features

Structure features are designed to capture spatial regularity
of the texture over the block. We extract structure informa-
tion from the intensity images alone. We compared several
sets of features for this purpose: the energies in different
wavelet subbands for both Haar and Daubechies wavelets;
AR models of different orders; and the energies of DCT
coefficients in regions of frequency space corresponding to
a wavelet decomposition. We found in practice that the
wavelet-like DCT and the Haar wavelet features performed
best, although only the AR models did significantly worse.
The DCT is computationally the most efficient however, and
we chose these energies as our structure features.

3.2. Colour features

Colour provides an extremely powerful cue for the distin-
guishing of different entities in the scene. As colour fea-
tures, we used the mean RGB values over a block and the
data covariance of the RGB values over a block. Since the
covariance matrix is symmetric, only half of it, including the
diagonal, is included in the feature vector. The colour fea-
ture vector is thus a9-dimensional vector,3 coming from
the mean and6 from the covariance.

3.3. Combining colour and structure

We combine the colour and texture models in the following
way. For each block, and for both structure and colour fea-
tures, we compute the right hand side of equation 1 for all
classes. Letn1(b) andn2(b) be the maximizing and next-to-
maximizing classes for blockb. We define the ‘confidence’

III - 570

➡ ➡



Fig. 1. Textures from the Vistex Database: Bark0;
Bark12; Fabric0; Fabric4; Fabric7; Fabric8; Fabric11; Fab-
ric13; Fabric15; Fabric17; Fabric19; flowers0; Food.0000;
Leaves12; Grass1; Clouds0; Brick0; Wood2; water0; Tile7;
Stone4; Sand.0000; Misc2; Metal0.

of the classification decision taken as:

C(b) = Pr(Db|νb = n1(b))/ Pr(Db|νb = n2(b)) (3)

If the classifications resulting from using the structure fea-
tures and the colour features conflict, we choose the deci-
sion with the highest confidence.

4. EXPERIMENTAL RESULTS

The experiments in this section were conducted on the MIT
Vision Texture (VisTex) database, and on the aerial images
of the San Francisco Bay area that were used in [9, 2, 10,
11].

4.1. Vistex texture database

We chose randomly24, 512 × 512 textured colour images
from the Vistex database. The textures are displayed in
figure 1. Each image was divided into subimages of size
32×32 pixels. All blocks extracted from the first96 subim-
ages of each texture were used for training, while the re-
maining160 subimages were used for testing.

For each class we trained a GMM with five components
using30 iterations of the EM algorithm. We chose five com-
ponents because increasing the number of components did
not improve the results significantly. We used30 iterations
for a similar reason: the EM algorithm appeared to have
converged after this number of iterations. We used the same
initialization for each texture class: the BKG model. The
results of the classification using the colour features, the
structure features and the combined decision are shown in
table 1.

Texture Colour Structure Both
Bark0 100 99 100
Bark12 93 73 92
Fabric0 100 96 100
Fabric4 82 100 100
Fabric7 96 100 100
Fabric8 99 94 98
Fabric11 100 86 100
Fabric13 94 98 100
Fabric15 100 98 100
Fabric17 92 98 99
Fabric19 99 99 100
Flowers0 100 96 99
Food0 100 96 100
Leaves12 19 99 94
Grass1 81 88 92
Clouds0 100 100 100
Brick0 100 99 100
Wood2 88 98 99
Water0 36 43 44
Tile7 56 94 86
Stone4 87 96 94
Sand0 100 96 100
Misc2 99 96 100
Metal0 97 94 96

Avg. Colour Avg. Texture Avg. Both
88.3 93.2 95.6

Table 1. VisTex results

4.2. Aerial images

This database includes six512 × 512 grey-scale images.
There exist also manual segmentations of the images into
man-made and natural areas. We use these segmentations
as ground truth. The images are displayed in Figure 2.

We used this database for evaluation exactly as it was
used in [9, 2]. For each iteration, one image was used as
test data, and the other five were used as training data. Per-
formance is evaluated by averaging over all iterations. Each
class (‘man-made’ and ‘natural’) was modelled by a five-
component GMM of the structure features. For initializa-
tion we used the BKG model.

The results from the GMM algorithm were compared to
the results from other statistical models reported in [2, 9]:
the 2D HMM (two-dimensional hidden Markov model) [2];
the 2D MHMM (two-dimensional multi-resolution hidden
Markov model) [9]; CART (a decision tree algorithm) [12];
and LVQ1 (version1 of Kohonen’s learning vector quan-
tization) [13]. The classification error rates for each test
image in the six-fold cross-validation and the average error
rates are listed in table 2.
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Fig. 2. Aerial images. On the left of each pair, the original
images. On the right, the manual segmentations. The dark
areas are natural, the lighter areas, man-made.

Iteration CART LVQ1 HMM MHMM GMM
1 22.6 21.6 19.0 17.3 16.4
2 18.0 19.1 17.6 16.3 14.0
3 28.9 28.4 20.3 17.8 19.6
4 25.2 24.9 24.0 20.5 19.1
5 14.2 18.7 18.3 12.5 4.2
6 20.2 18.1 13.3 11.5 15.4

Ave. 21.5 21.8 18.8 16.0 14.8

Table 2. Classification error rates (percentage) by algorithm

5. CONCLUSION

We have described Gaussian mixture models of texture and
colour features, and used them for the classification of tex-
tures in the VisTex database and for classifying ‘man-made’
and ‘natural’ areas in aerial images. We have compared
these models with others in the literature, and shown an
overall improvement in performance.
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