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ABSTRACT 

 
An effective rotation and scale invariant log-polar wavelet 
texture feature for image retrieval was proposed. The 
feature extraction process involves a log-polar transform 
followed by an adaptive row shift invariant wavelet 
packet transform. The log-polar transform converts a 
given image into a rotation and scale invariant but row-
shifted image, which is then passed to the adaptive row 
shift invariant wavelet packet transform to generate 
adaptively some subbands of rotation and scale invariant 
wavelet coefficients with respect to an information cost 
function. An energy signature is computed for each sub-
band of these wavelet coefficients. In order to reduce 
feature dimensionality, only the most dominant log-polar 
wavelet energy signatures are selected as feature vector 
for image retrieval. The whole feature extraction process 
is quite efficient and involves only ( log )n nΟ ⋅  
complexity. Experimental results show that this rotation 
and scale invariant texture feature is effective and 
outperforms the traditional wavelet packet signatures. 
 
 

1. INTRODUCTION 
 

With the advance of information technology, 
thousands of digitized images or photos are produced 
everyday, e.g. in World Wide Web.  However, most of 
these collections of images are heterogeneous and poorly 
indexed. So there is a great demand on some effective 
content-based image retrieval (CBIR) systems to make 
use of these huge image archives.  Traditionally, the most 
straightforward way to implement a image database 
management systems is by means of using the 
conventional database-management systems (DBMS) 
such as relational databases or object-oriented databases. 
The system of these kinds are usually called keyword-
based, in which the image attributes (e.g., text, 
annotations) are extracted manually or partially computed 
and managed within the framework of a conventional 
DBMS, such as Chabot [1], Piction [2], Photobook [3], 
WebSeer [4], etc.. However, the keyword-based approach 

provides for limited capacity for retrieving visual 
information. In most of cases, the associated image 
attributes cannot fully describe the contents of the 
imagery by themselves. Since the images attributes are 
annotated manually or semi-automatically. So the process 
of feature extraction is extremely time-consuming and 
human-resource intensive.  In the current research of 
CBIR systems [3][5][6][7][8][9], most of them focus on 
capability of visual search, i.e., images are retrieved by 
similarity for user provided sample images or sketch. 
Recently, texture has become popular for CBIR systems. 
Since most natural surfaces exhibit texture, a successful 
CBIR system must be able to deal with textured images in 
real world. For example, color alone cannot distinguish 
between tigers and cheetahs. Systems like QBIC [6], 
NETRA [7] and Photobook [3] employed different low-
level image features such as color, shape and texture for 
content-based image retrieval, and demonstrated that 
texture is one of the important feature. The Photobook 
project utilizes a 2-D Wold ordering and represents 
periodic textures using the autocorrelation function and 
random textures with a Multiresolution Simultaneous 
Autoregressive (MR-SAR) model, to perform texture 
annotation. In the NETRA project, Gabor filters have also 
been used for retrieval purposes. In their work, Gabor is 
shown to outperform other texture features such as 
pyramid-structured wavelet, tree-structured wavelet and 
MR-SAR. In addition, texture feature has also been used 
in the VisualSeek project by Smith and Chang [5], who 
extract binary texture features from the Quadrature Mirror 
Filterbank methods. However, most of the proposed 
methods assumed the images having the same orientation 
and/or scale.  This assumption is, however, not realistic 
for most practical applications. The performance of these 
methods becomes worse when this underlying assumption 
is no longer valid.  

 
In this paper, we propose an effective rotation and 

scale invariant log-polar wavelet texture feature for image 
retrieval. The feature extraction process involves a log-
polar transform followed by an adaptive row shift 
invariant wavelet packet transform. To reduce feature 
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dimensionality, only the most dominant log-polar wavelet 
energy signatures are selected as feature vector for image 
retrieval.  

Log-Polar
Transform

Adaptive Row Shift
Invariant Wavelet
Packet Transform

Rotated and scaled
texture image

Row shifted image

Rotation and scale invariant
wavelet coefficients

r=60,s=1.2

 
Fig. 1.  Schematic diagram of extracting rotation and scale 
invariant log-polar wavelet feature. 
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Fig. 2. A sample texture (D1) from the Brodatz album in 
different rotation angles (r in degrees) and scales (s) and their 
corresponding log-polar images. 
 

2.  ROTATION AND SCALE INVARIANT LOG-
POLAR WAVELET TEXTURE FEATURES 

It is well known that one of the major drawbacks of DWT 
is their lack of invariance to the shifting of the input 
signal, and for two dimensional input signals / images, 
2D-DWT are also sensitive to orientation / rotational 
changes; that is, the same images with different 
orientations may have different wavelet coefficients. In 
this section, we propose an approach to extract the 
rotation and scale invariant log-polar wavelet energy 
signatures for a given query image, which can be obtained 
by applying a log-polar transform on the image, followed 
by adaptive row shift invariant wavelet packet transform 
(as shown in Fig. 1). 
 
2.1.  Log-Polar Transform 

As a first step to extract the rotation and scale invariant 
wavelet signatures, the log-polar transform is used to 
eliminate the rotation and scale effects in the input image 
by converting the image into a corresponding log-polar 
image. Such log-polar image is rotation invariant and 
nearly scale invariant; however, it is row-shifted. The log-
polar transform algorithm is divided into two major steps. 
In the first step, the radius of the largest circle inside the 
given NN ×  image is used as a scan line to sample S times 
from 0° to 360° to produce its equivalent 

2
NS  ×  

polar 

form. Formally, the polar form ( , )p a r of the input NN ×  
image ),( yxf  can be computed as follows:   
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In the second step, logarithm functions are applied to all 
radii values in the polar form and their outputs are then 
quantized into S bins. Hence, a S S×  log-polar image for 
the given NN ×  image is produced. The procedure can be 
formally defined as follow: 

2
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  (2.2) 

for , 0, , 1i j S= − . 
As shown in Fig 2, the log-polar images of texture images 
with different rotation angles and scales seem having only 
row shifts when compared with the log-polar image of the 
original texture.  
 
2.2. Adaptive Row Shift Invariant Wavelet Packet 
Transform 
In our adaptive row shift-invariant wavelet packet 
decomposition, we employ a pair of quadrature mirror 
filters (QMF) to obtain orthonormal representation. In 
order to achieve row shift invariance, we build a 
redundant set of wavelet packet coefficients for one 
additional row circular shift. That is, on each level p+1, 
we compute four periodic images with no shift: 
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follows: 
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 and 0
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given by the intensity levels of the image x at row i and 
column j. 
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Since we just keep one out of two rows, these coefficients 
appear the same if 

,( , )
p

k i jC  is circulantly shifted by 0, 2, 4, 
...., 2n rows. In order to have row shift-invariance, we 
need to compute another four periodic images each with 
one row shift: { } ,1
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In a similar manner, these coefficients appear the same if 
,( , )

p
k i jC  is circulantly shifted by 1, 3, 5, ...., 2n+1 rows 

respectively. At each step, we decompose the image p
kC  

into eight quarter-size images 1
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In order to have a more effective and concise 
representation, we need to select the best basis 
representation for the image. Similar to the approach 
proposed by Coifman and Wickerhauser [17], we can 
adaptively select some subbands to decompose further, 
instead of decomposing every subbands. The basic idea is 
to compute the information cost M of each subband, and 
compare it with that of the sum of all next level subbands. 
If the information cost of the current subband is less than 
that of the sum of all next level subbands, then the current 
subband will not be decomposed; otherwise we 
decompose the current subband further and do 
comparison again until maximum level is reached. Hence, 
the best basis representation can be obtained by an 
efficient recursive selection process, which determines the 
best decomposition of the image based exclusively on the 
local minimization of the information cost function. Let 
the best basis representation for coarse resolution j (level 
j) be j

kA . Then the best basis 0
0A for the image x can be 

computed recursively by: 
7
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The recursive computation proceeds down to the specified 
level J, where 

,  0 8J J J
k kA C k= ≤ <   (2.12) 

For the issue of computational complexity, since we 
produce eight 2-D periodic images from one level to the 
next higher level in order to achieve row shift-invariance, 
we have at most 8 2 4l l l= ⋅  2-D periodic images for a 
decomposition up to level l, which are at most 2l times of 

those from standard wavelet packet decomposition. 
However, this decomposition can still be performed 
efficiently. Stepping from one level to the next higher 
level we double the number of 2-D periodic images and 
quarter the size of each of them. By repeating this 
procedure recursively to all levels, we can get the wavelet 
packet coefficients for all circular row shifts in log N steps 
with only ( log )n nΟ ⋅  complexity (n is the number of 
pixels in the image). 
 
2.3. Extraction of Wavelet Energy Signatures 
With the row shifted log-polar image obtained from the 
log-polar transform as the input to the adaptive row shift 
invariant wavelet packet transform, the row shift problem 
of the log-polar image is properly solved. So the 
generated wavelet coefficients are rotation and scale 
invariant now. However, the large number of wavelet 
coefficients is not suitable for image retrieval. So we 
reduce the feature dimensionality of the wavelet 
coefficients by computing energy signature for each sub-
band. In this way, the number of energy signatures is 
equal to the number of sub-bands generated by the 
adaptive row shift wavelet packet transform.  However, 
the number of energy signatures for image retrieval is not 
fixed and can be still very large.  As suggested by Chang 
and Kou [11], the most dominant frequency channels 
provide very useful information for discriminating 
textures. Therefore, we sort all energy signatures and 
choose only K most dominant energy signatures (with 
highest energy values) as feature vector. 
 

3. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of our proposed log-
polar wavelet feature for texture image retrieval, we use 
twenty-five natural textures, as shown in Fig. 3, from the 
Brodatz’s texture album [19] as class images. Each texture 
is scanned with 150 dpi resolution, and each image is of 
size 512x512 pixels with 256 grey levels. And each 
texture image is divided into four 256x256 non-
overlapping regions. We extract 72 sub-samples of size 
128x128 with different orientations (0o  to 180　 o with 15o 
interval) from each region. So, a dataset of 1200 (25x12x 
4) images was prepared for texture image retrieval 
experiments and each of the 48 images can be treated as a 
single class. The similarity between the query image q and 
the nth image in database is defined by the Euclidean 
distance[20] as follows: 

( ) ( ) ( ) ( )

1
( , )

M
q n q n

i i
i

d f f f f
=

= −∑  

where ( )qf is the feature vector of query image q, ( )nf is the 
feature vector of the nth image in the feature databases. 
In Fig. 4, the average precision and recall curves of our 
proposed method for different number of retrieved images 
using different number of dominant polar-wavelet energy 
features are plotted. It can be seen that our proposed 
method achieved the best retrieval accuracy with only 128 
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features, outperforming the traditional wavelet packet 
signature (WPS) image retrieval method. The experiments 
results also show that the more number of dominant 
energy signatures do not imply a higher accuracy rate; for 
instance, as shown in the above mentioned table and 
figures, retrievals using 128 dominant energy signatures 
could result in a higher accuracy rate than those using 160 
dominant energy signatures. 
 

 
Fig. 3.  Twenty-five classes of textures from the Brodatz 
album. Row 1: D1, D4, D6, D19, D20, Row 2: D21, D22, D24, 
D28, D34, Row 3: D52, D53, D56, D57, D66, Row 4: D74, D76, 
D78, D82, D84, Row 5: D102, D103, D105, D110, D111.      

Fig. 4. Average precision and recall versus number of retrieved 
images for different number dominant energy signatures. 
 

4. CONCLUDING REMARKS 
A rotation and scale invariant log-polar wavelet texture 
feature for image retrieval was proposed. The feature 
extraction process is quite efficient with 
only ( log )n nΟ ⋅ complexity. Experimental results show 
that the proposed method achieve high retrieval accuracy 
and outperform the traditional wavelet packet signature 
method. However, the emphasis of this paper has been on 
rotation and scale invariant texture feature. Our current 
implementation is based on sequential search. Further 
improvement could be on investigating methods for 
efficient multidimensional indexing. 
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