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ABSTRACT

An effective rotation and scale invariant log-polar wavelet
texture feature for image retrieval was proposed. The
feature extraction process involves a log-polar transform
followed by an adaptive row shift invariant wavelet
packet transform. The log-polar transform converts a
given image into a rotation and scale invariant but row-
shifted image, which is then passed to the adaptive row
shift invariant wavelet packet transform to generate
adaptively some subbands of rotation and scale invariant
wavelet coefficients with respect to an information cost
function. An energy signature is computed for each sub-
band of these wavelet coefficients. In order to reduce
feature dimensionality, only the most dominant log-polar
wavelet energy signatures are selected as feature vector
for image retrieval. The whole feature extraction process
is quite efficient and involves only O(n-logn)

complexity. Experimental results show that this rotation
and scale invariant texture feature is effective and
outperforms the traditional wavelet packet signatures.

1. INTRODUCTION

With the advance of information technology,
thousands of digitized images or photos are produced
everyday, e.g. in World Wide Web. However, most of
these collections of images are heterogeneous and poorly
indexed. So there is a great demand on some effective
content-based image retrieval (CBIR) systems to make
use of these huge image archives. Traditionally, the most
straightforward way to implement a image database
management systems is by means of using the
conventional database-management systems (DBMS)
such as relational databases or object-oriented databases.
The system of these kinds are usually called keyword-
based, in which the image attributes (e.g., text,
annotations) are extracted manually or partially computed
and managed within the framework of a conventional
DBMS, such as Chabot [1], Piction [2], Photobook [3],
WebSeer [4], etc.. However, the keyword-based approach
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provides for limited capacity for retrieving visual
information. In most of cases, the associated image
attributes cannot fully describe the contents of the
imagery by themselves. Since the images attributes are
annotated manually or semi-automatically. So the process
of feature extraction is extremely time-consuming and
human-resource intensive. In the current research of
CBIR systems [3][5][6][71[8][9], most of them focus on
capability of visual search, i.e., images are retrieved by
similarity for user provided sample images or sketch.
Recently, texture has become popular for CBIR systems.
Since most natural surfaces exhibit texture, a successful
CBIR system must be able to deal with textured images in
real world. For example, color alone cannot distinguish
between tigers and cheetahs. Systems like QBIC [6],
NETRA [7] and Photobook [3] employed different low-
level image features such as color, shape and texture for
content-based image retrieval, and demonstrated that
texture is one of the important feature. The Photobook
project utilizes a 2-D Wold ordering and represents
periodic textures using the autocorrelation function and
random textures with a Multiresolution Simultaneous
Autoregressive (MR-SAR) model, to perform texture
annotation. In the NETRA project, Gabor filters have also
been used for retrieval purposes. In their work, Gabor is
shown to outperform other texture features such as
pyramid-structured wavelet, tree-structured wavelet and
MR-SAR. In addition, texture feature has also been used
in the VisualSeek project by Smith and Chang [5], who
extract binary texture features from the Quadrature Mirror
Filterbank methods. However, most of the proposed
methods assumed the images having the same orientation
and/or scale. This assumption is, however, not realistic
for most practical applications. The performance of these
methods becomes worse when this underlying assumption
is no longer valid.

In this paper, we propose an effective rotation and
scale invariant log-polar wavelet texture feature for image
retrieval. The feature extraction process involves a log-
polar transform followed by an adaptive row shift
invariant wavelet packet transform. To reduce feature
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dimensionality, only the most dominant log-polar wavelet
energy signatures are selected as feature vector for image
retrieval.
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Fig. 1. Schematic diagram of extracting rotation and scale
invariant log-polar wavelet feature.
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Fig.2. A sample texture (D1) from the Brodatz album in
different rotation angles (r in degrees) and scales (s) and their
corresponding log-polar images.

2. ROTATION AND SCALE INVARIANT LOG-

POLAR WAVELET TEXTURE FEATURES
It is well known that one of the major drawbacks of DWT
is their lack of invariance to the shifting of the input
signal, and for two dimensional input signals / images,
2D-DWT are also sensitive to orientation / rotational
changes; that is, the same images with different
orientations may have different wavelet coefficients. In
this section, we propose an approach to extract the
rotation and scale invariant log-polar wavelet energy
signatures for a given query image, which can be obtained
by applying a log-polar transform on the image, followed
by adaptive row shift invariant wavelet packet transform
(as shown in Fig. 1).

2.1. Log-Polar Transform

As a first step to extract the rotation and scale invariant
wavelet signatures, the log-polar transform is used to
eliminate the rotation and scale effects in the input image
by converting the image into a corresponding log-polar
image. Such log-polar image is rotation invariant and
nearly scale invariant; however, it is row-shifted. The log-
polar transform algorithm is divided into two major steps.
In the first step, the radius of the largest circle inside the
given Nx N image is used as a scan line to sample S times
from 0° to 360° to produce its equivalent SXL]% Jpolar

form. Formally, the polar form p(q,r)of the input yx N
image £(x,y) can be computed as follows:

P = f(gJ +[jcos(%) H%J —[jsin %J) @1
for j=0,.-.,5—1, and j:O,--~,V%J—1

In the second step, logarithm functions are applied to all
radii values in the polar form and their outputs are then
quantized into S bins. Hence, a §xs log-polar image for
the given N x N image is produced. The procedure can be
formally defined as follow:
oo 108:0+2) | N 22
IpG, ) _p(l’{logz(S+2) L 5 H) (2:2)
for j,j=0,---,5-1.
As shown in Fig 2, the log-polar images of texture images
with different rotation angles and scales seem having only
row shifts when compared with the log-polar image of the
original texture.

2.2. Adaptive Row Shift Invariant Wavelet Packet
Transform

In our adaptive row shift-invariant wavelet packet
decomposition, we employ a pair of quadrature mirror
filters (OMF) to obtain orthonormal representation. In
order to achieve row shift invariance, we build a
redundant set of wavelet packet coefficients for one
additional row circular shift. That is, on each level p+1,
we compute four periodic images with no shift:
TN AR AT VLR C P R (= ST

follows:
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given by the intensity levels of the image x at row i and
column ;.
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Since we just keep one out of two rows, these coefficients
appear the same if Clin is circulantly shifted by 0, 2, 4,

...., 2" rows. In order to have row shift-invariance, we

need to compute another four periodic images each with
one row shift: + i=1.j=J il i=l.j=/ " i=1,j=1
{C§5c+4,(h/)}‘>/:0 ’ {C8k+5<(i,./')}"j:0 i {Cé;«wf;,(h,f)},-‘/:o ’

I =1j=/ as follows:
{Czﬁizu,ﬂ}

i,j=0

. 2.7
CEZ\JAL(A,/‘) = zzh(m)h(”)ckp,(mzlﬂ,mz/) ( )
o , 2.8
Cs’k:s.(i.j) = ZZh(m)g(n)clf.(m+21+l,r1+2j) ( )
pt 2.9
Ll =X MMM, ) 29)
(2.10)

Cé{;(:]l(i‘j) = Z Z g(m)g(n)cfﬁ;,(m+2i+l<n+2])

m n

In a similar manner, these coefficients appear the same if
Cli is circulantly shifted by 1, 3, 5, ..., 2™ rows
i

respectively. At each step, we decompose the image ¢

into eight quarter-size images ¢z, ¢z, C4s cots Co!

8k+17 “8k+2” Cgres 8k+4

Cp+l , Cp+l and Cp+l .

8k+5 8k+6 8k+7

In order to have a more effective and concise
representation, we need to select the best basis
representation for the image. Similar to the approach
proposed by Coifman and Wickerhauser [17], we can
adaptively select some subbands to decompose further,
instead of decomposing every subbands. The basic idea is
to compute the information cost ¢ of each subband, and
compare it with that of the sum of all next level subbands.
If the information cost of the current subband is less than
that of the sum of all next level subbands, then the current
subband will not be decomposed; otherwise we
decompose the current subband further and do
comparison again until maximum level is reached. Hence,
the best basis representation can be obtained by an
efficient recursive selection process, which determines the
best decomposition of the image based exclusively on the
local minimization of the information cost function. Let
the best basis representation for coarse resolution j (level
J) be 4. Then the best basis 4¢for the image x can be

computed recursively by:

. 1< "
Cr, ifM(CHY<—D ML) (2.11)
Af - 25
7
® Ar otherwise

The recursive computation proceeds down to the specified
level J, where
A4l =C], 0<k <8’ (2.12)

For the issue of computational complexity, since we
produce eight 2-D periodic images from one level to the
next higher level in order to achieve row shift-invariance,
we have at most § =2'.4' 2-D periodic images for a
decomposition up to level /, which are at most 2’ times of

those from standard wavelet packet decomposition.
However, this decomposition can still be performed
efficiently. Stepping from one level to the next higher
level we double the number of 2-D periodic images and
quarter the size of each of them. By repeating this
procedure recursively to all levels, we can get the wavelet
packet coefficients for all circular row shifts in log N steps
with onlyO(n-logn) complexity (n is the number of

pixels in the image).

2.3. Extraction of Wavelet Energy Signatures

With the row shifted log-polar image obtained from the
log-polar transform as the input to the adaptive row shift
invariant wavelet packet transform, the row shift problem
of the log-polar image is properly solved. So the
generated wavelet coefficients are rotation and scale
invariant now. However, the large number of wavelet
coefficients is not suitable for image retrieval. So we
reduce the feature dimensionality of the wavelet
coefficients by computing energy signature for each sub-
band. In this way, the number of energy signatures is
equal to the number of sub-bands generated by the
adaptive row shift wavelet packet transform. However,
the number of energy signatures for image retrieval is not
fixed and can be still very large. As suggested by Chang
and Kou [11], the most dominant frequency channels
provide very useful information for discriminating
textures. Therefore, we sort all energy signatures and
choose only K most dominant energy signatures (with
highest energy values) as feature vector.

3. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our proposed log-
polar wavelet feature for texture image retrieval, we use
twenty-five natural textures, as shown in Fig. 3, from the
Brodatz’s texture album [19] as class images. Each texture
is scanned with 150 dpi resolution, and each image is of
size 512x512 pixels with 256 grey levels. And each
texture image is divided into four 256x256 non-
overlapping regions. We extract 72 sub-samples of size
128x128 with different orientations (0°  to 180° with 15°
interval) from each region. So, a dataset of 1200 (25x12x
4) images was prepared for texture image retrieval
experiments and each of the 48 images can be treated as a
single class. The similarity between the query image ¢ and
the nth image in database is defined by the Euclidean
distance[20] as follows:

M
d '(q), () — i<4)7 ,(“)
CAAD! ;H.f f,

where s@is the feature vector of query image q, s»is the

feature vector of the nth image in the feature databases.

In Fig. 4, the average precision and recall curves of our
proposed method for different number of retrieved images
using different number of dominant polar-wavelet energy
features are plotted. It can be seen that our proposed
method achieved the best retrieval accuracy with only 128
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features, outperforming the traditional wavelet packet
signature (WPS) image retrieval method. The experiments
results also show that the more number of dominant
energy signatures do not imply a higher accuracy rate; for
instance, as shown in the above mentioned table and
figures, retrievals using 128 dominant energy signatures
could result in a higher accuracy rate than those using 160
dominant energy signatures.

Fig. 3.

=

Twenty-five classes of textures from the Brodatz

album. Row 1: D1, D4, D6, D19, D20, Row 2: D21, D22, D24,
D28, D34, Row 3: D52, D53, D56, D57, D66, Row 4: D74, D76,
D78, D82, D84, Row 5: D102, D103, D105, D110, DI11.

Number of Retrieved Images

Number of Retrieved Images

Fig. 4. Average precision and recall versus number of retrieved
images for different number dominant energy signatures.

4. CONCLUDING REMARKS

A rotation and scale invariant log-polar wavelet texture
feature for image retrieval was proposed. The feature

extraction

process is  quite  efficient  with

only O(n-log n) complexity. Experimental results show

that the proposed method achieve high retrieval accuracy
and outperform the traditional wavelet packet signature
method. However, the emphasis of this paper has been on
rotation and scale invariant texture feature. Our current
implementation is based on sequential search. Further
improvement could be on investigating methods for
efficient multidimensional indexing.
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