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ABSTRACT

In recent years, there has been increasing work in the area of con-
tent retrieval for sports. The idea is generally to extract important
events or create summaries to allow personalisation of the media
stream. While previous work in sports analysis has employed ei-
ther the audio or video stream to achieve some goal, there is little
work that explores how much can be achieved by combining the
two streams. This paper combines both audio and image features
to identify the key episode in tennis broadcasts. The image fea-
ture is based on image moments and is able to capture the essence
of scene geometry without recourse to 3D modelling [1]. The au-
dio feature uses PCA to identify the sound of the ball hitting the
racket. The features are modelled as stochastic processes and the
work combines the features using a likelihood approach. The re-
sults show that combining the features yields a much more robust
system than using the features separately.
Keywords: Multimedia, Content Retrieval, Audiovisual analyis,
PCA, Image Moments, Sports Summaries, Tennis

1. INTRODUCTION

Retrieval and summarisation of sports footage have received
increasing interest in recent years. It is expected that the rise
of home Digital media will increase the demand for easily
browsable content, and hence the need for automatic con-
tent manipulation. Much of the work has concentrated on
using video analysis for example, Sudhir et al. [1] extracted
events from tennis using video analysis and the geometry of
the court; Chang et.al [2] have used HMMs for summariz-
ing Baseball footage. Work is emerging that considers the
audio signal for spotting important events [3, 4]. In general
for sports the audio signal is capable of characterising much
shorter duration events than the video signal. In sports like
tennis, cricket, badminton it is the short and sharp noise of
the ball hitting the racket or bat that defines the basic build-
ing block action of the game. Both the audio and video
signals therefore contain useful information and this work
considers the use of both audio and video features for pars-
ing tennis footage.
The basic unit of this game is the serve and subsequent rally
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or passage of play until the point is decided. Tennis sum-
maries therefore generally contain the main court view dur-
ing each of the main points. See the central frame of Fig-
ure 1 for a typical grass court shot refered as large view in
this paper. This article presents a mechanism for extract-
ing each rally by identifying the court view and by building
a mechanism that ‘listens’ for the sound of the racket hit-
ting the ball (referred to as a racket hit in this paper). The
video sequence is first segmented into shots using the com-
mon histogram analysis technique. The task addressed by
this paper is to identify each shot that is a passage of play
shot containing the court view. The classification can be
achieved by noting that the relevant shots contain both a
full court view and a noise of the ball hitting the rackets.
To characterise the court view we employ a recent idea that
uses the implicit scene geometry [5] without recourse to 3D
camera modelling. This is discussed in section 2.
Although much work has been done to characterize generic
classes of sounds like speech and music, only a few authors
have considered sport sound classes. These have focussed
on specific sport event sound classes like bat hits in base-
ball [6] or dribbling, shooting, etc. sounds in basketball [3].
Previous works propose to use simple template matching
techniques which do not yield satisfying results [3]. In this
work the detection of racket hits is improved by using an
eigenspace representation of the class of interest. A simi-
larity measure, already used successfully in image process-
ing [7], is computed between observations and the training
eigenspace. This allows the classification of each frame of
the video as a racket hit or not.
The evolution of the features is modelled as Gaussian and
this admits a simple mechanism for the data fusion process
as outlined in section 3. The frame level features are used
to generate shot level descriptors which are used in the data
fusion process. In section 4, experimental results shows the
improvement in using joint visual and audio information.

2. VIDEO FEATURES AT FRAME LEVEL

This section presents respectively the visual and audio fea-
tures used, and proposes expressions for their likelihoods.
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The likelihoods express the probabilities that a frame repre-
sents a main court view and that the audio represents racket
hits.

2.1. Frame level visual feature

The second moment of the hough transform of the edges
is computed for each image [5]. This measure, noted ��� ,
is used to detect frames showing a main view of the court
where its value remains constant. This moment feature is
low when there is strong scene geometry since the Hough
space will contain compact clusters representing major lines
in the image. As the large view of the court is dominated by
the physical, rectangular court structure the feature works
well to discriminate it without the need to resort to any 3D
information (as used in [1]). Figure 2 shows the low level
plateaus that correspond to the court views. The likelihood
of this visual feature to be computed on a frame showing
a main view of the court is then simply expressed with a
gaussian law:��� ����� 	�

��������� �������������  "! � ��� !$# �
�&%')( %� * (1)

Its mean
# � and variance

( %� are learned on training shots.

2.2. Frame level audio feature

Since the racket hit is a short sound between 10 to 20 ms
long, we have chosen to compute the spectrogram of the
audio track using a 40 ms window (duration of a frame in
the video). The power spectrum of this Fourier transform,
normalised by its energy, is then computed for each window
and corresponds to our audio features �,+ .
Eigenspace representation. - audio features correspond-
ing to racket hits are collected. A Principal Component
Analysis (PCA) is then performed over this training database..

eigenvectors corresponding to the
.

highest eigenvalues
are retained to span the eigenspace / .
Distance from the feature space. A common way to mea-
sure the similarity of an unknown observation �,+ with the
training cloud, is to compute the distance between �,+ and
the eigenspace / . This Distance From Feature Space (DFFS)
is defined as [7]:0�132 � ��+
��4657��+ !$# + !98): � ��+ !$# +
��5 (2)

where
# + is the mean of the audio features, and

8
is the ma-

trix collecting the
.

eigenvectors computed in the learning
step with PCA.
Likelihood of having a Racket hit. Assuming a uniform
distribution over the eigenspace / , the likelihood of having
a racket hit can be approximated [7, 8] using the likelihood
of the reconstruction error :��� ��+�� ;)
�<>=���?�@�� ?����A�����  B! � 0�132 � ��+
�C�&%'D( %+ * (3)

The variance
( %+ is estimated using the mean value of the

eigenvalues EBF�G
H�G�I3J in /LK [7].

3. VIDEO FEATURES AT SHOT LEVEL

The frame level video features are processed to generate
shot level features. These features allow access to higher
level content information, in classifying shots as rallies M
or not M .
Shot level visual feature. The feature ��N� considered to
represent the visual content of the shots corresponds to the
mean of the error square computed over the shot:

� N� 4AO3P
Q�R NTS�U ��� !$# �( �WV %>X
Using the mean allows the shot level visual feature to not be
dependent of the duration of the shot. Then, the likelihood
is simply expressed using a gaussian law:��� � N� � Y�4ZM[���A����� !  � N�' * (4)

Shot level audio feature. The feature ��N+ considered to rep-
resent the audio content of the shots corresponds to the min-
imum of the similarity measure DFFS computed over the
shot: � N+ 46\]� ^P�_`R N�a 0�132 � ��+
�( + b
The likelihood of the audio features of a shot to be a Rally
is modelled as :��� � N+ � Y�4ZM[���A����� !  ��N+' * (5)

Fusion of audio and visual information. Assuming the
independence of audio and visual data, the likelihood using
both audio and visual features has simply been computed
by:��� � N+dc � N� � Y�4ZM[��4 ��� � N+ � Y�4ZM[�fe ��� � N� � Y�4�M[� (6)

4. EXPERIMENTAL RESULTS

The following results have been computed over 2949 frames
of a video sequence of an outdoor tennis match (Pierce Vs
Serna). This contains 18 shots including 5 rallies. Figure
1 shows a selected frame from three different shots (crowd,
close view of the player, large view of the court), and their
corresponding audio features (or spectrogram) computed ov-
er the shots. Note how distinctive the racket sounds are
as compared to crowd cheering or speech (observed in the
close view shot).

Training features. The training has been performed us-
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��� : crowd ��� : large view of the court ��� : close view of a player
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Fig. 1. Frames extracted from 3 different shots
���
	 � �
� � ��� � and

their corresponding spectrogram computed over the audio track of
the shots.

ing a sequence of an other match. The dimension of the
eigenspace has been chosen as

. 4 ���
corresponding to

75% of the information over the training data [7].
Audio and visual features. Figure 2 presents the ground
truth over the sequence: shots E�� c���c ��� c ��� c � � H belong to
our class of interest M . The second curve shows the evolu-
tion of the second moment of the hough transform : some
constant plateaus appear for shots with large view of the
court, but also sometimes for close view of the players.
This implies that some false alarms for detecting rally shot
may appear when using only visual features. The last curve
presents the similarity (DFFS) computed over the sequence.
Low values indicate high probabilities to have racket hits.
Figure 3 shows the receiver operating characteristic (ROC)
curve computed with our racket hit detector using several
tennis audio test tracks: setting a threshold at

��� �
allows to

detect more than 90% of the racket hits for less than 1.5% of
false alarms. In the Pierce sequence,

���
of the

'��
racket hits

are detected without any false alarms. This prelimary result
on sport event sound detection shows that simple learning
techniques can be successfully used with better results than
the template matching technique [3].
Rally Shot Detection. Figure 4 presents the log-likelihoods

of the 18 shots of the test using respectively from top to
bottom, the logarithm of the expressions 4, 5 and 6. Red
crosses indicates the rally that are to be detected. Blue
crosses represent the other kinds of shots. The arrows in
figure 4 highlight the two highest potential false alarm shots
using visual information. These represent the same camera
view of one player. Figure 5 presents two frames extracted
from those shots. To compare the results between the three
methods, the highest log-likelihood of a non-rally shot is
computed:

��� + 4�\ 
B�N R � +  ! � ��� � N+ c � N� � Y�4ZM[�

Fig. 2. From top to bottom : ground truth over the sequence
(rose: crowd; green: large view of the court, yellow: close view
of the players, grey: dissolve; black: cut), moment of the hough
transform (visual features), and the dffs computed using the audio
features.
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Fig. 3. Racket hit detection: the detection rate w.r.t. the false
alarm rate (Log) using the DFFS (ROC curve).

where "$# collects all the non rally shots (potential false
alarms). The lowest log-likelihood of a rally shot is also
computed:

�&%(' 46\ 
B�N R %('  ! � ��� � N+�c � N� � Y�4ZM[�
where )+* collects all the rally shots (potential missed de-
tections). Then the following measure can be used to assess
the accuracy and efficiency in setting a threshold for classi-
fication of the shots:

, 4 �&%(' ! ��� +
Table 1 presents

,
for the three tests (cf. fig. 4). The neg-

ative value obtained using only the visual information indi-
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Fig. 4. From top to bottom: log-likelihood of the shots using only
visual features, only audio features, and finally both features.

shot Y���� shot Y����
Fig. 5. Extracted frames from potential false alarms shots using
visual information alone.

cates that it is impossible to fix a threshold allowing
�������

of good detection for
���

of false alarms. This is possible
using only audio features or using jointly audio and visual
ones. But the interval to fix the threshold is bigger in using
jointly audio and visual information which implies a better
discrimination between the class of rally-shots and its com-
plementary M . In this experiment, visual features used alone

Visual Audio Visual & Audio,
-0.5590 6.0106 9.8897

Table 1. Difference of the log-likelihoods of the first potential
missed detected and the first potential false alarm.

do not allow to classify shots in the class of interest M with-
out false alarms. On the contrary, both audio features used
alone and jointly with visual ones allow this. There is an
advantage in joint audio visual analysis since the difference
in likelihood between the two classes M and M is bigger.

5. CONCLUSION

This paper has presented a new scheme for the combina-
tion of audio and video features for extracting tennis rallies
from broadcast footage. The results show that there is a
substantial improvement in classification when both types
of features are combined. Of particular interest is the low
computational cost of the methods for feature extraction and
data fusion. It is interesting to note that for broadcast sports
footage the audio and video quality is very high, because it
is a principal revenue earner for the broadcaster. Also dur-
ing events like Tennis, there is little crowd noise during the
main playing activity. This implies that there is a high like-
lihood of success for audio analysis of the key game events,
reflected by the results shown here. Note that our current
audio features are normalised which implies the loss of vol-
ume information. Although our results show that the current
features work well, future work will incorporate this rele-
vant energy feature. Our current work revolves around ap-
plying similar ideas to cricket and other ‘fixed view’ events.
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