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ABSTRACT

Efficient image watermarking techniques have been developed in
the wavelet domain. Similar to other wavelet-based image
processing, the choice of wavelet filters generally affects the
performance of a wavelet-based watermarking system. In this
paper, we evaluate the performance of a set of biorthogonal
integer wavelets under a  multiresolution-watermarking
framework. Biorthogonal integer wavelets have been extensively
used for image applications because they possess the linear-phase
property and can be efficiently implemented. We find that the
widely adopted 9/7-F wavelet achieves the best robustness
performance. Further investigation is conducted to show that the
superiority of the 9/7-F wavelet is primarily owing to its being
nearly orthogonal.

1. INTRODUCTION

In the last decade digital multimedia data have proliferated with
the rapid developments of PC and Internet. The digital technology
provides many advantages, including error-free reproduction,
efficient processing and storage, and a uniform format for
multimedia applications. These advantages, however, may hinder
content owners from offering digital services because their
revenues may be jeopardized due to perfect and rapid
dissemination of unprotected digital contents. A watermark is an
imperceptible code that remains present and detectable even if the
media is processed and consumed by end users, and therefore can
be used as a proof of copyright ownership.

To be valid for copyright protection, an image watermarking
system should meet the following requirements [1]:

¢ Transparency. The embedded watermark should degrade

the perceptual quality of host media to a minimal degree.

+ Robustness. Any attack that erases the embedded

watermark should render the host image useless.

+  Adequate complexity. This issue is critical especially for

real-time applications.

Image watermarking can be performed either in the spatial
domain or in the transform domain. Spatial-domain techniques
directly modulate the pixels while transform-domain techniques
modify the DCT [2] (discrete cosine transform) or DWT [3]
(discrete wavelet transform) coefficients. Transform-domain
techniques usually achieve better performance since the
perceptual characteristics of images can be better utilized and the
spread spectrum principles used in secure communications can be
easily incorporated. Multiresolution analysis with wavelet
transforms has become the major vehicle for efficient image
coding algorithms including the new JPEG-2000 standard [4].
The eligible basis functions for multiresolution analysis, however,
are not unique. A natural and important question thus arises:
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“What is the best basis (wavelet) for use?” This question is almost
answered for image compression. Both theoretical derivations and
experimental evaluations have been extensively conducted [5]-[7].
The ‘best’ wavelets (9/7 and 5/3) have been chosen for the JPEG-
2000 standard. The same issue, however, has not been resolved for
image watermarking. This paper tries to answer the ‘best-basis’
problem for multiresolution image watermarking systems using
biorthogonal wavelets.

In the following, we first review some fundamental knowledge
about biorthogonal wavelet transforms. We then describe our
wavelet evaluation platform for image watermarking. Simulation
results along with analyses are presented next, followed by the
conclusion.

2. BIORTHOGONAL INTEGER WAVELET
TRANSFORMS

Favorable properties of wavelets include [8]:
Desirable time-frequency localization.
Compact support.

Orthogonality.

Smoothness, regularity, or vanishing moments.

+  Symmetry (linear-phase constraint).

The above requirements may be conflicting. For example, the
only real-valued orthogonal linear-phase wavelet with compact
support is the trivial Haar filter. By relaxing the orthogonality
constraint, most image applications employ the linear-phase
biorthogonal FIR wavelets. This subclass of wavelets permits
perfect reconstruction by symmetric extension across boundaries,
avoiding the coefficient expansion and border discontinuity
introduced by using circular convolution together with periodic
extension. Additionally, the linear-phase biorthogonal wavelets
can be efficiently implemented in the lifting framework [9], [10].

In this paper, we consider the biorthogonal integer wavelet
transforms (IWT) under the lifting structure for performance
evaluation. The seven IWT under study are the 5/3, 5/11-A, 5/11-
C, 9/7-M, 9/7-F, 13/7-C, and 13/7-T, all tabulated in reference [7].
IWT is a fixed-point approximation to its parent linear transform,
and can be implemented without resorting to costly floating-point
operations. It is reversible and suitable for a unified lossy and
lossless codec. Furthermore, the degradation introduced by the
integer approximation is often very small [7], [11].

When applied to coding and watermarking, the wavelet
transforms may require proper normalization. For a dyadic
multiresolution system, the scaling function coefficients (i.e., the
lowpass filter) {A(n)} should be normalized for convergence as [8]

> h(n)=+2 (1

* & ¢ o

Some properties of the seven wavelets are given in Table 1.
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Table 1: Some properties of the wavelets under study. The
vanishing moments M/N are for the analyzing and synthesizing
filters, respectively [7]. NOM will be addressed in Section 4.

5/3 |5/11-A|5/11-C|9/7-M | 9/7-F [13/7-C|13/7-T

Vanishing
moments | 22 | 22 | 42 | 42 | 44 | 42 | 44
Coding | 6277 | 6.300 | 6.280 | 6.181 | 5.916 | 6.260 | 6.241
gain

NOM | 1.438 | 1.438 | 1.438 | 1.347 | 1.040 | 1.310 | 1.300

3. EVALUATION PLATFORM

We follow the multiresolution-watermarking framework reported
in [3] as our wavelet filter evaluation platform. A p-level two-
dimensional pyramidal DWT in one of the seven types is
performed to generate (3p + 1) subbands. We index these
subbands from 0 to 3p in a parent-to-child order. Subband 0 is an
approximation to the original image while the other subbands
provide details. According to the spread-spectrum principle, a
watermark signal w = {w;, i = 1, 2,..., n} of length n is cast upon
n selected wavelet coefficients over various subbands. The
locations of these watermark-bearing coefficients p should be
recorded along with the original wavelet coefficients x and the
watermark signal w, to be the private keys for watermark
extraction. Taking the self-masking effects into consideration, a
multiplicative watermarking scheme is adopted. A wavelet
coefficient x; is modified by w to y; as

Ve =x(I+awy) 2

where the strength factor « determines the watermarking energy
that balances transparency and robustness.

For watermark identification, the image under dispute of
copyright violation performs the same multiresolution analysis as
in the watermark-embedding process. The obtained wavelet

coefficient yz would be a distorted version of y; due to
intentional attacks or unintentional image processing. The
watermark sequence w* is retrieved from y,: by

* y* —X
W == —- 3
k

with the aid of private keys p and x. The similarity of the
extracted pattern w* and the original watermark signal w can be
measured by the correlation coefficient

w,w >

P <
PW,W )= ——e—
Wil llw I,

“4)
where <., .> denotes the inner product and ||.||, denotes the 2 norm.
A value of pthat is close to 1 indicates a high degree of similarity.
An appropriate threshold on p for copyright confirmation is
determined to compromise the probabilities of false positive and
false negative.

Common parameters of the described multiresolution
watermarking system for our simulation are summarized below:

¢ Number of levels of DWT (p): 5.

+  Test images: 512 x 512, 8 bpp (bits per pixel) gray-scale

images Lena and Baboon.
¢  The watermark signal w is collected from an independent

identically distributed Gaussian random source of zero
mean and unit variance.

¢ The strength factor « is adjusted to allow the maximal
robustness without noticeable degradation. We make the
watermarked images with different wavelet transforms
have the same peak signal-to-noise ratio (PSNR) for a fair
comparison. The watermarked Lena and Baboon have
PSNR equal to 35.6 dB and 38.4 dB, respectively, as
shown in Fig. 1.

¢  The proposed system is evaluated against a set of default
noise-like attacks included in the StirMark benchmark
system [12]. The examined attacks are sharpening,
Gaussian filtering, FMLR, 3x3 median filtering, and lossy
JPEG compression with various quality factors.

Fig. 1: The watermarked images using the 9/7-F wavelet, (a) Lena
(PSNR=35.6 dB), (b) Baboon (PSNR= 38.4 dB).

4. EXPERIMENTAL RESULTS AND ANALYSES

We consider two scenarios in sequence to investigate the
robustness of the multiresolution watermarking system using
different biorthogonal integer wavelets.

Scenario I:
¢ Subbands to embed: all subbands excluding the
approximation layer (subband 0). It is observed that
labeling the approximation layer results in visible
artifacts. The largest n (in magnitude) wavelet coefficients
are selected to embed the watermark.
+  Length of the watermark signal (n): 1000.
The corresponding values of the strength factor « for different
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wavelets are given in Table 2. The similarity results against
attacks are given in Tables 3 and 4. We find the 9/7-F filter [5]
provides consistently the best results, while the differences among
the others are small. Since image compression shares many
common characteristics with watermarking, in the following we
discuss the wavelet-based image coding to shed some light on the
wavelet-based watermarking.

Table 2: Strength factor « for watermarking in Scenario I.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T
Lena 0.178 1 0.184 | 0.173 | 0.181 | 0.185 ] 0.178 | 0.173

Table 5: SPIHT coding performance for Lena. The number
indicates the PSNR (in dB) of the reconstructed image.

bpp 5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T
0.125 ] 29.1 | 294 | 294 | 293 | 30.3 | 293 | 293
025 | 31.8 | 319 | 31.8 | 323 | 33.2 | 323 | 324
0.5 352 | 353 | 352 | 349 | 36.1 | 35.0 | 35.0

1.0 | 384 | 384 | 382 | 38.0 | 383 | 37.9 | 38.0

Table 6: SPIHT coding performance for Baboon. The number
indicates the PSNR (in dB) of the reconstructed image.

Baboon | 0.190 | 0.181 | 0.177 | 0.192 | 0.181 | 0.190 | 0.189

bpp 5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T

Table 3: Scenario-I similarity tests for Lena.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F [13/7-C|13/7-T
Sharpen-| 0.363 | 0.347 | 0.321 | 0.261 | 0.483 | 0.293 | 0.294

ing
Gaussian| 0.688 | 0.695 | 0.676 | 0.651 | 0.840 | 0.638 | 0.622
Filtering
FMLR | 0.500 | 0.535 ] 0.509 | 0.532 | 0.604 | 0.524 | 0.505
Median | 0.314 | 0.296 | 0.286 | 0.278 | 0.813 | 0.212 | 0.251
Filtering
JPEG 30{ 0.900 | 0.906 | 0.903 | 0.871 | 0.970 | 0.866 | 0.870
JPEG 20| 0.841 | 0.844 | 0.834 | 0.776 | 0.939 | 0.781 | 0.758
JPEG 10] 0.628 | 0.657 | 0.645 | 0.613 | 0.832 | 0.612 | 0.585

Table 4: Scenario-I similarity tests for Baboon.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T
Sharpen-| 0.178 | 0.164 | 0.115 | 0.193 | 0.235 | 0.169 | 0.164

ing
Gaussian| 0.376 | 0.365 | 0.379 | 0.313 | 0.419 | 0.340 | 0.332
Filtering
FMLR | 0.686 | 0.682 | 0.670 | 0.676 | 0.730 | 0.679 | 0.681
Median | 0.544 | 0.506 | 0.507 | 0.500 | 0.582 | 0.525 | 0.482
Filtering
JPEG 30] 0.767 | 0.752 | 0.761 | 0.685 | 0.890 | 0.737 | 0.692
JPEG 20| 0.637 | 0.600 | 0.628 | 0.566 | 0.806 | 0.613 | 0.571
JPEG 10] 0.472 | 0.457 | 0.490 | 0.423 | 0.655 | 0.463 | 0.441

Modern wavelet image coders are derived from Shapiro’s
embedded zerotree wavelet (EZW) coding [13]. The EZW coding
is an iterative algorithm, which not only efficiently removes the
inter-scale redundancy across scales but also generates scalable
bitstreams. Among the various improvements of EZW, the set
partitioning in hierarchical trees (SPIHT) coding [14] is regarded
as the simplest and most efficient. SPIHT has become a basis by
which new image compression methods are compared. The SPIHT
coding results for the seven filters are given in Tables 5 and 6. The
arithmetic coding is not included in the coding algorithm since it
provides only marginal improvement in rate reduction while
involving intensive computation. We observe that the 9/7-F filter
outperforms the others, as is for watermarking. The PSNR gap is
significant, especially at low bit rates. Note that the low-rate
results are particularly interesting to us since in the proposed
scheme the watermark information is inserted in large wavelet
coefficients that are found significant in early quantization
iterations.

0.125 | 20.2 | 20.0 | 19.8 | 20.5 | 214 | 20.6 | 20.5
025 | 22.1 | 22.1 | 22.0 | 21.8 | 22.6 | 22.0 | 219
0.5 245 | 245 | 244 | 243 | 249 | 244 | 244
1.0 | 27.6 | 27.6 | 275 | 273 | 284 | 274 | 274

Among the various attributes that may affect the performance
of biorthogonal wavelets, we believe that the closeness to
orthogonality may be dominant. Orthogonality implies energy
preservation, and the sum of individual subband mean square
errors (MSE) equals the overall MSE in the spatial domain.
Consequently, efficient quantization and bit-allocation procedures
can be directly developed in the transform domain for orthogonal
wavelets. Typical coding (or watermarking) systems, however,
employ the same quantization (or watermarking) procedures for
both orthogonal and biorthogonal wavelets. Performance
degradation is expected from the “energy mismatch” for
biorthogonal wavelets. Several closeness measures on
orthogonality for biorthogonal wavelets have been developed
[15]-[17]. For example, the near-orthogonality measure (NOM)
has been defined in [15] as

NOM = 3| h(m) ®)

NOM is the weighting factor of the lowpass subband distortion
introduced by non-orthogonality. Orthogonal wavelets have the
NOM value equal to 1 and the deviation of NOM from 1 can be
regarded as the degree of non-orthogonality. The NOM values of
the seven filters under study are listed in the last row of Table 1. It
can be seen that the 9/7-F wavelet is ‘almost’ orthogonal; it is of
no surprise since its parent linear wavelet is designed to
approximate orthonormal filters [5].

Scenario II:
In contrast to compression where no subband can be discarded
without distortion penalty, we can choose the watermarking
subbands to be on the same level to avoid energy mismatch. The
Scenario-Il ~ experiments proceed with the following
modifications:
+  Subbands to embed: only subbands 1 and 2. They are both
on the lowest-frequency detail level.
¢ Length of the watermark signal (n): 256. That is, the
largest (in magnitude) 256 coefficients out of the 512
coefficients within subbands 1 and 2 are modified.
The corresponding values of « for this scenario are given in Table
7. The similarity results are given in Tables 8 and 9. Two factors
account for the general increase in correlation coefficients relative
to Scenario I. First, the strength factor « increases with the
smaller number of n. Second, the low-frequency subbands are
more resilient to noise-like distortions. Note that the similarity gap
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between 9/7-F and other wavelets becomes much less significant.
This confirms our conjecture that orthogonality is the deciding
factor for the robustness performance. For a multiresolution
watermarking system using biorthogonal wavelets, a major
challenge would therefore be to intelligently distribute the
watermarking energy over the watermark-bearing wavelet
coefficients. Besides, we have tested the linear (floating-point)
versions of the employed filter banks and have concluded that the
watermarking performance degradation introduced by integer
approximation is small, as is for compression. Currently we are
developing general watermarking schemes suitable for non-
orthogonal wavelets.

Table 7: Strength factor « for watermarking in Scenario II.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T

Lena 0.257 ] 0.246 | 0.234 | 0.250 | 0.249 | 0.260 | 0.240

Baboon | 0.288 | 0.282 | 0.270 | 0.280 | 0.294 | 0.272 | 0.288

Table 8: Scenario-II similarity tests for Lena.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T

Sharpen- | 0.827 | 0.745 | 0.692 | 0.756 | 0.864 | 0.843 | 0.768
ing

Gaussian | 0.950 | 0.943 | 0.918 | 0.935 | 0.975 | 0.950 | 0.933
Filtering

FMLR | 0.819 | 0.802 | 0.809 | 0.821 | 0.897 | 0.870 | 0.840
Median | 0.702 | 0.984 | 0.659 | 0.710 | 0.934 | 0.724 | 0.680
Filtering
JPEG 30 | 0.966 | 0.957 | 0.956 | 0.955 | 0.978 | 0.961 | 0.952
JPEG 20 | 0.943 | 0.938 | 0.931 | 0.925 | 0.963 | 0.947 | 0.936
JPEG 10 | 0.834 | 0.808 | 0.812 | 0.876 | 0.878 | 0.854 | 0.843

Table 9: Scenario-II similarity tests for Baboon.

5/3 |5/11-A|5/11-C| 9/7-M | 9/7-F |13/7-C|13/7-T

Sharpen- | 0.648 | 0.600 | 0.608 | 0.664 | 0.712 | 0.607 | 0.652
ing

Gaussian | 0.938 | 0.939 | 0.900 | 0.906 | 0.970 | 0.921 | 0.912
Filtering

FMLR |0.924 | 0.902 | 0.879 | 0.888 | 0.955 | 0.910 | 0.912

Median | 0.836 | 0.856 | 0.887 | 0.848 | 0.926 | 0.837 | 0.846
Filtering

JPEG 30 | 0.953 | 0.947 | 0.935 | 0.940 | 0.973 | 0.935 | 0.935

JPEG 20 | 0.935 | 0.931 | 0.919 | 0.900 | 0.961 | 0.929 | 0.914

JPEG 10 | 0.847 | 0.832 | 0.813 | 0.827 | 0.897 | 0.846 | 0.828

5. CONCLUSION

This paper tries to find the best biorthogonal wavelet filter for
multiresolution image watermarking. Simulation is conducted
under a spread-spectrum watermarking framework where a
Gaussian distributed watermark is injected into the largest wavelet
coefficients. We evaluate the robustness performance of seven
integer biorthogonal wavelet bases. The 9/7-F wavelet provides a
substantial edge when all detail subbands are eligible for
watermarking. The performance gap shrinks when only subbands
on the same level are watermarked, which substantiates the
conjecture that the major merit of the 9/7-F wavelet for image
watermarking is its orthogonality.
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