
WAVELET FILTER EVALUATION FOR IMAGE WATERMARKING 

Shih-Hsuan Yang 

Department of Computer Science and Information Engineering 
National Taipei University of Technology

ABSTRACT

Efficient image watermarking techniques have been developed in 
the wavelet domain. Similar to other wavelet-based image 
processing, the choice of wavelet filters generally affects the
performance of a wavelet-based watermarking system. In this 
paper, we evaluate the performance of a set of biorthogonal 
integer wavelets under a multiresolution-watermarking
framework. Biorthogonal integer wavelets have been extensively
used for image applications because they possess the linear-phase
property and can be efficiently implemented. We find that the
widely adopted 9/7-F wavelet achieves the best robustness 
performance. Further investigation is conducted to show that the 
superiority of the 9/7-F wavelet is primarily owing to its being 
nearly orthogonal.

1. INTRODUCTION 

In the last decade digital multimedia data have proliferated with
the rapid developments of PC and Internet. The digital technology
provides many advantages, including error-free reproduction,
efficient processing and storage, and a uniform format for 
multimedia applications. These advantages, however, may hinder
content owners from offering digital services because their 
revenues may be jeopardized due to perfect and rapid 
dissemination of unprotected digital contents. A watermark is an 
imperceptible code that remains present and detectable even if the
media is processed and consumed by end users, and therefore can 
be used as a proof of copyright ownership.

To be valid for copyright protection, an image watermarking 
system should meet the following requirements [1]:

Transparency. The embedded watermark should degrade 
the perceptual quality of host media to a minimal degree.
Robustness. Any attack that erases the embedded 
watermark should render the host image useless.
Adequate complexity. This issue is critical especially for 
real-time applications.

Image watermarking can be performed either in the spatial
domain or in the transform domain. Spatial-domain techniques 
directly modulate the pixels while transform-domain techniques 
modify the DCT [2] (discrete cosine transform) or DWT [3]
(discrete wavelet transform) coefficients. Transform-domain
techniques usually achieve better performance since the
perceptual characteristics of images can be better utilized and the 
spread spectrum principles used in secure communications can be 
easily incorporated. Multiresolution analysis with wavelet 
transforms has become the major vehicle for efficient image
coding algorithms including the new JPEG-2000 standard [4].
The eligible basis functions for multiresolution analysis, however,
are not unique. A natural and important question thus arises: 

“What is the best basis (wavelet) for use?” This question is almost
answered for image compression. Both theoretical derivations and
experimental evaluations have been extensively conducted [5]-[7].
The ‘best’ wavelets (9/7 and 5/3) have been chosen for the JPEG-
2000 standard. The same issue, however, has not been resolved for
image watermarking. This paper tries to answer the ‘best-basis’
problem for multiresolution image watermarking systems using
biorthogonal wavelets.

In the following, we first review some fundamental knowledge 
about biorthogonal wavelet transforms. We then describe our 
wavelet evaluation platform for image watermarking. Simulation
results along with analyses are presented next, followed by the
conclusion.

2. BIORTHOGONAL INTEGER WAVELET 
TRANSFORMS

Favorable properties of wavelets include [8]:
Desirable time-frequency localization. 
Compact support. 
Orthogonality.
Smoothness, regularity, or vanishing moments. 
Symmetry (linear-phase constraint). 

The above requirements may be conflicting. For example, the 
only real-valued orthogonal linear-phase wavelet with compact
support is the trivial Haar filter. By relaxing the orthogonality
constraint, most image applications employ the linear-phase
biorthogonal FIR wavelets. This subclass of wavelets permits 
perfect reconstruction by symmetric extension across boundaries,
avoiding the coefficient expansion and border discontinuity
introduced by using circular convolution together with periodic 
extension. Additionally, the linear-phase biorthogonal wavelets 
can be efficiently implemented in the lifting framework [9], [10].

In this paper, we consider the biorthogonal integer wavelet 
transforms  (IWT) under the lifting structure for performance
evaluation. The seven IWT under study are the 5/3, 5/11-A, 5/11-
C, 9/7-M, 9/7-F, 13/7-C, and 13/7-T, all tabulated in reference [7].
IWT is a fixed-point approximation to its parent linear transform,
and can be implemented without resorting to costly floating-point 
operations. It is reversible and suitable for a unified lossy and 
lossless codec. Furthermore, the degradation introduced by the 
integer approximation is often very small [7], [11].

When applied to coding and watermarking, the wavelet 
transforms may require proper normalization. For a dyadic
multiresolution system, the scaling function coefficients (i.e., the
lowpass filter) {h(n)} should be normalized for convergence as [8]

2)(
n

nh  (1) 

Some properties of the seven wavelets are given in Table 1.
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Table 1: Some properties of the wavelets under study. The 
vanishing moments M/N are for the analyzing and synthesizing
filters, respectively [7]. NOM will be addressed in Section 4.

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Vanishing
moments 2/2 2/2 4/2 4/2 4/4 4/2 4/4

Coding
gain

6.277 6.300 6.280 6.181 5.916 6.260 6.241

NOM 1.438 1.438 1.438 1.347 1.040 1.310 1.300

3. EVALUATION PLATFORM

We follow the multiresolution-watermarking framework reported
in [3] as our wavelet filter evaluation platform. A p-level two-
dimensional pyramidal DWT in one of the seven types is 
performed to generate (3p + 1) subbands. We index these
subbands from 0 to 3p in a parent-to-child order. Subband 0 is an
approximation to the original image while the other subbands 
provide details. According to the spread-spectrum principle, a 
watermark signal w = {wi, i = 1, 2,…, n} of length n is cast upon 
n selected wavelet coefficients over various subbands. The
locations of these watermark-bearing coefficients p should be 
recorded along with the original wavelet coefficients x and the 
watermark signal w, to be the private keys for watermark
extraction. Taking the self-masking effects into consideration, a 
multiplicative watermarking scheme is adopted. A wavelet
coefficient xk is modified by wk to yk as

)1( kkk wxy (2)

where the strength factor  determines the watermarking energy
that balances transparency and robustness. 

For watermark identification, the image under dispute of 
copyright violation performs the same multiresolution analysis as
in the watermark-embedding process. The obtained wavelet 
coefficient would be a distorted version of y*

ky k due to 
intentional attacks or unintentional image processing. The 
watermark sequence w* is retrieved from  by*

ky
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with the aid of private keys p and x. The similarity of the 
extracted pattern w* and the original watermark signal w can be 
measured by the correlation coefficient

2
*

2

*
*

||||||||
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where <., .> denotes the inner product and ||.||2 denotes the 2 norm. 
A value of that is close to 1 indicates a high degree of similarity.
An appropriate threshold on  for copyright confirmation is
determined to compromise the probabilities of false positive and
false negative. 

Common parameters of the described multiresolution
watermarking system for our simulation are summarized below:

Number of levels of DWT (p): 5. 
Test images: 512  512, 8 bpp (bits per pixel) gray-scale
images Lena and Baboon.
The watermark signal w is collected from an independent 

identically distributed Gaussian random source of zero 
mean and unit variance.
The strength factor  is adjusted to allow the maximal
robustness without noticeable degradation. We make the 
watermarked images with different wavelet transforms
have the same peak signal-to-noise ratio (PSNR) for a fair 
comparison. The watermarked Lena and Baboon have
PSNR equal to 35.6 dB and 38.4 dB, respectively, as
shown in Fig. 1.
The proposed system is evaluated against a set of default
noise-like attacks included in the StirMark benchmark
system [12]. The examined attacks are sharpening,
Gaussian filtering, FMLR, 3 3 median filtering, and lossy
JPEG compression with various quality factors. 

(a)

(b)

Fig. 1: The watermarked images using the 9/7-F wavelet, (a) Lena 
(PSNR= 35.6 dB), (b) Baboon (PSNR= 38.4 dB). 

4. EXPERIMENTAL RESULTS AND ANALYSES 

We consider two scenarios in sequence to investigate the 
robustness of the multiresolution watermarking system using 
different biorthogonal integer wavelets.

Scenario I: 
Subbands to embed: all subbands excluding the
approximation layer (subband 0). It is observed that
labeling the approximation layer results in visible 
artifacts. The largest n (in magnitude) wavelet coefficients
are selected to embed the watermark.
Length of the watermark signal (n): 1000. 

The corresponding values of the strength factor  for different
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Table 5: SPIHT coding performance for Lena. The number
indicates the PSNR (in dB) of the reconstructed image.

wavelets are given in Table 2. The similarity results against 
attacks are given in Tables 3 and 4. We find the 9/7-F filter [5]
provides consistently the best results, while the differences among
the others are small. Since image compression shares many
common characteristics with watermarking, in the following we 
discuss the wavelet-based image coding to shed some light on the
wavelet-based watermarking.

bpp 5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
0.125 29.1 29.4 29.4 29.3 30.3 29.3 29.3
0.25 31.8 31.9 31.8 32.3 33.2 32.3 32.4
0.5 35.2 35.3 35.2 34.9 36.1 35.0 35.0
1.0 38.4 38.4 38.2 38.0 38.3 37.9 38.0

Table 2: Strength factor for watermarking in Scenario I. 
Table 6: SPIHT coding performance for Baboon. The number
indicates the PSNR (in dB) of the reconstructed image.5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T

Lena 0.178 0.184 0.173 0.181 0.185 0.178 0.173
Baboon 0.190 0.181 0.177 0.192 0.181 0.190 0.189 bpp 5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T

0.125 20.2 20.0 19.8 20.5 21.4 20.6 20.5
0.25 22.1 22.1 22.0 21.8 22.6 22.0 21.9
0.5 24.5 24.5 24.4 24.3 24.9 24.4 24.4
1.0 27.6 27.6 27.5 27.3 28.4 27.4 27.4

Table 3: Scenario-I similarity tests for Lena. 

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Sharpen-

ing
0.363 0.347 0.321 0.261 0.483 0.293 0.294

Gaussian
Filtering

0.688 0.695 0.676 0.651 0.840 0.638 0.622

FMLR 0.500 0.535 0.509 0.532 0.604 0.524 0.505
Median
Filtering

0.314 0.296 0.286 0.278 0.813 0.212 0.251

JPEG 30 0.900 0.906 0.903 0.871 0.970 0.866 0.870
JPEG 20 0.841 0.844 0.834 0.776 0.939 0.781 0.758
JPEG 10 0.628 0.657 0.645 0.613 0.832 0.612 0.585

Among the various attributes that may affect the performance
of biorthogonal wavelets, we believe that the closeness to
orthogonality may be dominant. Orthogonality implies energy
preservation, and the sum of individual subband mean square
errors (MSE) equals the overall MSE in the spatial domain.
Consequently, efficient quantization and bit-allocation procedures
can be directly developed in the transform domain for orthogonal 
wavelets. Typical coding (or watermarking) systems, however,
employ the same quantization (or watermarking) procedures for
both orthogonal and biorthogonal wavelets. Performance 
degradation is expected from the “energy mismatch” for
biorthogonal wavelets. Several closeness measures on 
orthogonality for biorthogonal wavelets have been developed 
[15]-[17]. For example, the near-orthogonality measure (NOM)
has been defined in [15] as 

Table 4: Scenario-I similarity tests for Baboon. 

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Sharpen-

ing
0.178 0.164 0.115 0.193 0.235 0.169 0.164

Gaussian
Filtering

0.376 0.365 0.379 0.313 0.419 0.340 0.332

FMLR 0.686 0.682 0.670 0.676 0.730 0.679 0.681
Median
Filtering

0.544 0.506 0.507 0.500 0.582 0.525 0.482

JPEG 30 0.767 0.752 0.761 0.685 0.890 0.737 0.692
JPEG 20 0.637 0.600 0.628 0.566 0.806 0.613 0.571
JPEG 10 0.472 0.457 0.490 0.423 0.655 0.463 0.441

n

nh 2|)(|NOM  (5) 

NOM is the weighting factor of the lowpass subband distortion 
introduced by non-orthogonality. Orthogonal wavelets have the 
NOM value equal to 1 and the deviation of NOM from 1 can be
regarded as the degree of non-orthogonality. The NOM values of 
the seven filters under study are listed in the last row of Table 1. It
can be seen that the 9/7-F wavelet is ‘almost’ orthogonal; it is of
no surprise since its parent linear wavelet is designed to 
approximate orthonormal filters [5].Modern wavelet image coders are derived from Shapiro’s

embedded zerotree wavelet (EZW) coding [13]. The EZW coding 
is an iterative algorithm, which not only efficiently removes the 
inter-scale redundancy across scales but also generates scalable 
bitstreams. Among the various improvements of EZW, the set 
partitioning in hierarchical trees (SPIHT) coding [14] is regarded 
as the simplest and most efficient. SPIHT has become a basis by
which new image compression methods are compared. The SPIHT
coding results for the seven filters are given in Tables 5 and 6. The
arithmetic coding is not included in the coding algorithm since it 
provides only marginal improvement in rate reduction while 
involving intensive computation. We observe that the 9/7-F filter 
outperforms the others, as is for watermarking. The PSNR gap is 
significant, especially at low bit rates. Note that the low-rate
results are particularly interesting to us since in the proposed 
scheme the watermark information is inserted in large wavelet 
coefficients that are found significant in early quantization 
iterations.

Scenario II: 
In contrast to compression where no subband can be discarded 
without distortion penalty, we can choose the watermarking 
subbands to be on the same level to avoid energy mismatch. The 
Scenario-II experiments proceed with the following
modifications:

Subbands to embed: only subbands 1 and 2. They are both 
on the lowest-frequency detail level. 
Length of the watermark signal (n): 256. That is, the 
largest (in magnitude) 256 coefficients out of the 512
coefficients within subbands 1 and 2 are modified.

The corresponding values of for this scenario are given in Table
7. The similarity results are given in Tables 8 and 9. Two factors
account for the general increase in correlation coefficients relative
to Scenario I. First, the strength factor  increases with the 
smaller number of n. Second, the low-frequency subbands are 
more resilient to noise-like distortions. Note that the similarity gap 
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between 9/7-F and other wavelets becomes much less significant. 
This confirms our conjecture that orthogonality is the deciding 
factor for the robustness performance. For a multiresolution 
watermarking system using biorthogonal wavelets, a major 
challenge would therefore be to intelligently distribute the 
watermarking energy over the watermark-bearing wavelet 
coefficients. Besides, we have tested the linear (floating-point) 
versions of the employed filter banks and have concluded that the 
watermarking performance degradation introduced by integer 
approximation is small, as is for compression. Currently we are 
developing general watermarking schemes suitable for non-
orthogonal wavelets.

Table 7: Strength factor for watermarking in Scenario II. 

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Lena 0.257 0.246 0.234 0.250 0.249 0.260 0.240
Baboon 0.288 0.282 0.270 0.280 0.294 0.272 0.288

Table 8: Scenario-II similarity tests for Lena. 

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Sharpen-

ing
0.827 0.745 0.692 0.756 0.864 0.843 0.768

Gaussian 
Filtering 

0.950 0.943 0.918 0.935 0.975 0.950 0.933

FMLR 0.819 0.802 0.809 0.821 0.897 0.870 0.840
Median 
Filtering 

0.702 0.984 0.659 0.710 0.934 0.724 0.680

JPEG 30 0.966 0.957 0.956 0.955 0.978 0.961 0.952
JPEG 20 0.943 0.938 0.931 0.925 0.963 0.947 0.936
JPEG 10 0.834 0.808 0.812 0.876 0.878 0.854 0.843

Table 9: Scenario-II similarity tests for Baboon. 

5/3 5/11-A 5/11-C 9/7-M 9/7-F 13/7-C 13/7-T
Sharpen-

ing
0.648 0.600 0.608 0.664 0.712 0.607 0.652

Gaussian 
Filtering 

0.938 0.939 0.900 0.906 0.970 0.921 0.912

FMLR 0.924 0.902 0.879 0.888 0.955 0.910 0.912
Median 
Filtering 

0.836 0.856 0.887 0.848 0.926 0.837 0.846

JPEG 30 0.953 0.947 0.935 0.940 0.973 0.935 0.935
JPEG 20 0.935 0.931 0.919 0.900 0.961 0.929 0.914
JPEG 10 0.847 0.832 0.813 0.827 0.897 0.846 0.828

5. CONCLUSION 

This paper tries to find the best biorthogonal wavelet filter for 
multiresolution image watermarking. Simulation is conducted 
under a spread-spectrum watermarking framework where a 
Gaussian distributed watermark is injected into the largest wavelet 
coefficients. We evaluate the robustness performance of seven 
integer biorthogonal wavelet bases. The 9/7-F wavelet provides a 
substantial edge when all detail subbands are eligible for 
watermarking. The performance gap shrinks when only subbands 
on the same level are watermarked, which substantiates the 
conjecture that the major merit of the 9/7-F wavelet for image 
watermarking is its orthogonality. 
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