
HIGH CAPACITY REVERSIBLE DATA EMBEDDING AND CONTENT AUTHENTICATION

Jun Tian

Digimarc Corporation
19801 SW 72nd Avenue, Tualatin, OR 97062, USA

juntian@ieee.org

ABSTRACT

In this paper we present a high capacity reversible data em-
bedding algorithm. It serves for the purposes of both self
authentication and reversible data embedding. As being re-
versible, the original digital content (before data embed-
ding) can be completely restored after authentication. We
employ two techniques, difference expansion and general-
ized least significant bit embedding, to achieve very high
embedding capacity, while keep the distortion (the qual-
ity degradation on the digital content after data embedding)
low. A noticeable difference between our method and oth-
ers is that we do not need to compress original values of the
embedding area. We explore the redundancy in the digital
content to achieve reversibility.

1. INTRODUCTION

Reversible data embedding [1, 2, 3, 4, 5, 6, 7, 8], which is
also called reversible watermarking, has drawn lots of inter-
est recently. It embeds invisible data (which is called a pay-
load) into a digital content in a reversible fashion. As a basic
requirement, the quality degradation on the digital content
after data embedding should be low. A intriguing feature of
reversible data embedding is the reversibility, that is, when
the digital content has been authenticated, one can remove
the embedded data to restore the original content (before
data embedding). Such reversibility to get back original
content is highly desirable in sensitive imagery, such as mil-
itary data and medical data.

Compared with authentication techniques in cryptogra-
phy, reversible data embedding does not change the file syn-
tax of a digital content. A legacy viewer or player can still
view or play the embedded digital content. Secondly, the
embedded data becomes an inherent part of the content, and
is robust against (lossless) file format conversion, in contrast
to a cryptography authentication hash has to be appended as
extra metadata. In addition, reversible data embedding pro-
vides high capacity data embedding without increasing the
storage space (file size) of the digital content.

In this paper, we present a reversible data embedding
method for digital images. Our method can be applied to

digital audio and video as well. We employ two techniques,
difference expansion (DE) [7] and generalized least signif-
icant bit (G-LSB) embedding [2], to achieve very high em-
bedding capacity, while keep the distortion low. We calcu-
late the differences of neighboring pixel values, and select
some difference values for DE. The original G-LSBs of dif-
ference values, the location of expanded difference values,
and a payload (which includes an authentication hash of the
original image) will all be embedded into the difference val-
ues, where the extra storage space is obtained by DE.

In this paper we will consider grayscale images only.
For color images, one can embed the data into each color
component individually. Or one can decorrelate the depen-
dence among different color components, and then embed
the data into the decorrelated components, as in [6].

2. REVERSIBLE DATA EMBEDDING

A general reversible data embedding diagram is illustrated
in Fig. 1. We embed a payload into a digital imageI by
(slightly) modifying its pixel values, and obtain the embed-
ded imageI’ . Before sending it to the decoder,I’ might or
might not have been tampered by some intentional or unin-
tentional attack. If the decoder finds that no tampering hap-
pened inI’ , i.e.,I’ is authentic, then the decoder can remove
the embedded payload fromI’ to restore the original image,
which results in a new imageI” . By definition of reversible
data embedding, the restored imageI” will be exactly the
same as the original imageI, pixel by pixel, bit by bit.

A basic approach of reversible data embedding is to se-
lect an embedding area (for example, the least significant
bits of some pixels) in an image, and embed both the pay-
load and the original values in this area (needed for exact re-
covery of the original image) into such area. As the amount
of information needed to be embedded (payload and origi-
nal values in the embedding area) is larger than that of the
embedding area, most reversible data embedding techniques
[1, 2, 3, 5] rely on lossless data compression on the origi-
nal values in the embedding area, and the space saved from
compression will be used for embedding the payload. In [6]
we presented a DE technique, which removes the need of

III - 5170-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

Digital
ImageI

-Payload
Embed

Embedded
ImageI’

-Decoding
Authentication

©©©*

HHHj

Authentic

Tampered

-Original
Restore

Restored
ImageI”

(= I)

Fig. 1. Reversible data embedding diagram.

lossless compression on original values in the embedding
area. The DE technique discovers extra storage space by
exploring the high redundancy in the image content.

2.1. Reversible Integer Transform

We start with a simple reversible integer transform. For a
grayscale-valued pair(x, y), x, y ∈ Z, 0 ≤ x, y ≤ 255,
define their integer average and difference as

l :=
⌊

x + y

2

⌋
, h := x− y (1)

where the symbolb·c is the floor function meaning “the
greatest integer less than or equal to”. The inverse trans-
form of (1) is

x = l +
⌊

h + 1
2

⌋
, y = l −

⌊
h

2

⌋
(2)

The reversible integer transform (1) and (2) are also called
integer Haar wavelet transform, or the S transform [9].

We will select the magnitudes of difference valuesh for
embedding. As grayscale values are bounded in[0, 255],

0 ≤ l +
⌊

h + 1
2

⌋
≤ 255, 0 ≤ l −

⌊
h

2

⌋
≤ 255

which is equivalent to

|h| ≤ 2(255− l), and|h| ≤ 2l + 1 (3)

To prevent overflow and underflow problems, the difference
valueh (after data embedding) must satisfy Condition (3).

2.2. Changeable and Expandable Difference Value

Given an integerL, L ∈ Z, L ≥ 2, the (L-level) G-LSB,
g, of a difference valueh, is the reminder of its magnitude
divided byL,

g := |h| −
⌊ |h|

L

⌋
· L

The G-LSBs ofchangeabledifference values will be the se-
lected embedding area for our method.

Definition 1 For a grayscale-valued pair(x, y), we say its
difference valueh is L-changeableif

⌊ |h|
L

⌋
· L + 1 ≤ min(2(255− l), 2l + 1)

During data embedding, the G-LSBg might be replaced
by a value from the reminder set{0, 1, · · · , L− 1}. Due to
constraint (3), some large reminders might cause an over-
flow or underflow. Thus we could only replaceg with a
value from a partial reminder set{0, 1, · · · ,M}, with g ≤
M ≤ L− 1, whereM is determined byl and

⌊
|h|
L

⌋
.

Modifying G-LSBs of L-changeableh (without com-
pression) does not provide extra storage space. We gain ex-
tra storage space fromexpandabledifference values.

Definition 2 For a grayscale-valued pair(x, y), we say its
difference valueh is L-expandableif

|h| · L + 1 ≤ min(2(255− l), 2l + 1)

In a baseL representation, anL-expandableh could add
one extra numberb after its G-LSB. More precisely,h could
be replaced byh′, without causing an overflow or underflow

h′ = sign(h) · (|h| · L + b)

Again, due to constraint (3),b could be a value from a par-
tial reminder set{0, 1, · · · ,M}, with 1 ≤ M ≤ L− 1, and
M is determined byl and|h|. Thus for eachL-expandable
difference value, one could gainlog2(M+1) extra bits. The
reversible operation fromh to h′ is calleddifference expan-
sion. An L-expandableh is L-changeable. After DE, the
expandedh′ is L-changeable. Note that ifh = 0, the con-
ditions onL-changeable andL-expandable are equivalent.

We could also embed on the difference valueh directly
instead of its magnitude. For this purpose, we modifyL-
changeable (and consequentlyL-expandable) forh < 0 as
below, define DE ash′ = h · L + b, where0 ≤ b ≤ L− 1,
and carry a slightly different scheme

∣∣∣∣
⌊

h

L

⌋
· L + L− 2

∣∣∣∣ ≤ min(2(255− l), 2l + 1)

2.3. Embedding Algorithm

An image is grouped into pairs of pixel values. A pair con-
sists of two neighboring pixel values or two with a small dif-
ference value. The pairing could be through all pixels of the
image or just a portion of it. (To achieve maximum embed-
ding capacity, we could embed a payload with one pairing,
then embed another payload with another pairing on the em-
bedded image. For example, we could embed columnwise

III - 518

➡ ➡

first, then embed rowwise.) We apply the integer transform
(1) to each pair.

Next we create four disjoint sets of difference values:

1. EZ: contains allL-expandableh = 0.

2. EN: contains allL-expandableh 6∈ EZ.

3. CNE: contains allL-changeableh 6∈ EZ∪ EN.

4. NC: contains all notL-changeableh.

Each difference value will fall into one and only one set.
EZ∪ EN∪ CNE contains all changeable difference values.

The third step is to create a location map of selected ex-
pandable difference values. All difference values in EZ will
be selected for DE. For EN, depending on the payload size,
some difference values will be selected for DE. A discussion
on expandable difference values selection can be found in
[7]. For convenience, we denote the subsets of selected and
not selected difference values in EN as EN1 and EN2, re-
spectively. We create a one-bit bitmap as the location map,
with its size equal to the numbers of pairs of pixel values (in
Step 1). For anh in either EN1 or EZ, we assign a value 1;
for anh in EN2, CNE, or NC, we assign a value 0. The lo-
cation map will be losslessly compressed by a JBIG2 com-
pression or run-length coding. The compressed bit stream
is denoted asL. An end of message symbol is appended at
the end ofL.

Fourth, we collect original values of G-LSBs of differ-
ence values in EN2 and CNE. For eachh in EN2 or CNE,
its G-LSBg will be collected into a bit streamC. We em-
ploy the L-ary to Binary conversion method of [2] to convert
g to a binary bit stream. The L-ary to Binary conversion
is a division scheme of unit interval, similar to arithmetic
coding. Ash is L-changeable, we determineM , whereg
could be replaced by a value from the partial reminder set
{0, 1, · · · ,M} without causing an overflow or underflow.
We convertg to the interval[g

M+1 , g+1
M+1). This interval will

be further refined by the next G-LSBs, and so on, until we
go through all G-LSBs in EN2∪CNE. Then we decode the
final interval to a binary bit stream. By using L-ary to Bi-
nary conversion, the representation of G-LSBs will be more
compact, which results in a smaller bit stream size ofC.
Note that if |h| ≤ L − 1, after itsg is collected, we also
store its sign, sign(h), in the bit streamC. (If we define DE
ash′ = h · L + b, there will be no need to store the signs of
difference values.)

Fifth, we embed the location mapL, the original G-
LSBs C, and a payloadP (which includes an authentica-
tion hash, for example, a message authentication code). We
combine them together into one binary bit streamS,

S = L ∪ C ∪ P
We use the inverse L-ary to Binary conversion to convert
the binary bit streamS to M -ary, with M determined for

each expandable difference value in EZ and EN1, and each
changeable difference value in EN2 and CNE. The embed-
ding (by replacement) will be

• EZ: |h| = b, whereb is theM -ary symbol from the
inverse L-ary to Binary conversion, and the sign ofh
could be assigned pseudo randomly.

• EN1: h = sign(h) · (|h| · L + b) .

• EN2 or CNE:h = sign(h) ·
(⌊

|h|
L

⌋
· L + b

)
.

• NC: no change on the value ofh.

After all embedding is done, we apply the inverse integer
transform (2) to obtain the embedded image.

2.4. Decoding Algorithm

First we do the pairing using the same pattern as in the em-
bedding, and apply the integer transform (1) to each pair.

Next we create two disjoint sets of difference values:

1. C: contains allL-changeableh.

2. NC: contains all notL-changeableh.

The set C (after embedding) will be identical to EZ∪ EN∪
CNE (before embedding). This invariant feature (which is
an invariant set in this case) is the key for exact recovery.

Third we collect all G-LSBs of difference values in C.
We employ the L-ary to Binary conversion to convert it into
a binary bit streamB.

Fourth, from the binary bit stream, we decode the lo-
cation map. With the location map, we restore the original
values of difference values as follows:

• if h ∈ C, the location map value is 1, thenh =
sign(h) ·

⌊
|h|
L

⌋
.

• if h ∈ C, the location map value is 0, andh = 0,
decode anM -ary symbolb fromB, and decode a sign
values fromB, thenh = s · b.

• if h ∈ C, the location map value is 0, and1 ≤ |h| ≤
L − 1, thenh = sign(h) · b, and the next sign value
fromB should correctly match sign(h).

• if h ∈ C, the location map value is 0, and|h| ≥ L,

thenh = sign(h) ·
(⌊

|h|
L

⌋
· L + b

)
.

• if h ∈ NC, the location map value should be 0, no
change on the value ofh.

After all difference values have been restored to their
original values, we apply the inverse integer transform (2) to
reconstruct a restored image. For content authentication, we

III - 519

➡ ➡

extract the payloadP from B (which will be the remaining
after Step 4). We then compare the authentication hash inP
with the hash of the restored image. If they match exactly,
then the image content is authentic, and the restored image
will be exactly the same as the original image. Most likely
a tampered image will not go through to this step because
some decoding error could happen in Step 4. Note that we
use a slightly different order of operations from Fig. 1. We
reconstruct a restored imageI” first, then authenticate the
content of the embeddedI’ .

3. EXPERIMENTAL RESULTS

For the maximum embedding capacity results listed below,
we expand all expandable difference values (EN1 = EN).
The image is embedded twice, first with a columnwise pair-
ing, then a rowwise pairing.

Table 1 lists the results on the 512×512, 8 bits per pixel
(bpp), grayscale Lena image. ForL = 2, 3, 4, the maxi-
mum embedding capacity (in bits), along with its bit rate,
are shown. AtL = 2, the maximum embedding capacity
(259927 bits) is already above the best result in the litera-
ture, which is around 200000 bits.

L 2 3 4
max capacity (bits) 259927 394981 466605

bit rate (bpp) 0.9915 1.5067 1.7800

Table 1. Maximum embedding capacity of Lena.

Table 2 lists the results forL = 2, 3 on the Mandrill
image, which is also 512×512, 8 bpp, grayscale. Due to its
irregular texture, Mandrill is more difficult to reversibly em-
bed. The reported best result on its embedding capacity is
about 50000 bits, which is easily surpassed by our method.

L 2 3
max capacity (bits) 231930 264359

bit rate (bpp) 0.8847 1.0084

Table 2. Maximum embedding capacity of Mandrill.

To embed a payload with a smaller size than the maxi-
mum embedding capacity, we reduce the size of EN1, until
the targeted embedding capacity is met. For example, to
embed a payload of 138856 bits in Lena, there are 116029
expandableh ∈ EN atL = 2 with columnwise pairing. We
assign 106635 of them in EN1, and the rest in EN2. The
PSNR of the embedded image is 35.45 dB, which is higher
than other methods with a payload of the same size.

Another feature of our method is the true fidelity at half
resolution. As the integer average of each pair of pixel val-
ues are unchanged during embedding, the mean of each2×2

block of the embedded image will be the same as the orig-
inal image, except for rounding errors of integer averages.
Thus at half resolution, the visual quality is imperceptible.

4. CONCLUSIONS

We present a high capacity reversible data embedding algo-
rithm. As DE brings extra storage space, compression on
original values of the embedding area is not needed. With
compression (such as a linear prediction and entropy cod-
ing in [9]), the maximum embedding capacity will be even
higher, with the expanse of complexity.

5. REFERENCES

[1] J. M. Barton, “Method and apparatus for embedding
authentication information within digital data,”United
States Patent, 5,646,997, 1997.

[2] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber,
“Reversible data hiding,” inProc. of ICIP, Sept. 2002,
vol. II, pp. 157–160.

[3] J. Fridrich, M. Goljan, and R. Du, “Lossless data
embedding - new paradigm in digital watermarking,”
EURASIP Journal on Applied Signal Processing, vol.
2002, no. 2, pp. 185–196, Feb. 2002.

[4] C. W. Honsinger, P. W. Jones, M. Rabbani, and J. C.
Stoffel, “Lossless recovery of an original image
containing embedded data,” United States Patent,
6,278,791, 2001.

[5] T. Kalker and F. M. J. Willems, “Capacity bounds and
constructions for reversible data hiding,” inProc. of the
14th International Conference on Digital Signal Pro-
cessing, July 2002, vol. 1, pp. 71–76.

[6] J. Tian, “Wavelet-based reversible watermarking for au-
thentication,” inSecurity and Watermarking of Multi-
media Contents IV, E. J. Delp III and P. W. Wong, Eds.,
Jan. 2002, vol. 4675 ofProc. of SPIE, pp. 679–690.

[7] J. Tian, “Reversible watermarking by difference expan-
sion,” in Proc. of Workshop on Multimedia and Secu-
rity, J. Dittmann, J. Fridrich, and P. Wohlmacher, Eds.,
Dec. 2002, pp. 19–22.

[8] C. De Vleeschouwer, J. F. Delaigle, and B. Macq, “Cir-
cular interpretation of histogram for reversible water-
marking,” inProc. of IEEE 4th Workshop on Multime-
dia Signal Processing, 2001.

[9] A. Said and W. A. Pearlman, “An image multiresolu-
tion representation for lossless and lossy compression,”
IEEE Transactions on Image Processing, vol. 5, no. 9,
pp. 1303–1310, Sept. 1996.

III - 520

➡ ➠

