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ABSTRACT

An affine invariant 2-D curve matching and alignment ap-
proach is proposed to solve the image registration prob-
lem. Superior accuracy and efficiency is achieved by a con-
cept calledsuper-resolution curveand a technique called
B-spline fusion. A super-resolution curveis formed by su-
perimposing two affine related and registered curves (in dis-
crete form) upon each other. TheB-spline fusiontechnique
is designed to obtain a single B-spline approximation of the
super-resolution curveand registration estimate simultane-
ously. Occlusion is handled by curve segmentation using in-
flections and cusps, which are affine invariant. Partial match
then becomes possible by matching segments of curves. A
complete image registration framework based on edge de-
tection and curve alignment is then proposed. Accurate reg-
istration results have been achieved.

1. INTRODUCTION

Image registration has found numerous applications in med-
ical operations [1], digital video processing( [2, 3]), and
synthetic aperture radar (SAR) image analysis [4]. The re-
search areas related to this problem include image normal-
ization and invariant pattern recognition. In this paper, we
propose an efficient curve matching and alignment method
to solve affine image registration and invariant shape de-
scription problems. (Note that weak perspective projections
can also be approximated by affine transforms.) We in-
troduce aB-spline fusiontechnique to accurately recover
the transform parameters between two affine related curves.
The accuracy and efficiency is achieved by the concept of
super-resolution curve. A super-resolution curveis a curve
formed by two affine related curves (in discrete form) reg-
istered and superimposed upon each other. Curve matching
and registration can then be accomplished in one step. We
address the occlusion problem by curve segmentation using
inflections and cusps, which are affine invariant. A com-
plete image registration framework is then formed based on
the proposed techniques.

This research is supported by an NJ State R&D excellence grant.

2. 2-D CURVE REPRESENTATION BY B-SPLINES

In this paper, 2-D points are represented in vector form, i.e.,
pointpi = [xi yi]T . A curve in discrete form is a point list,
p = [p0 p1 . . . pM−1]. A B-Spline representation of curve
p divides the curve intoL segments and approximates each
segment by a linear combination of parametric polynomial
base functions. Specifically, we

minimize
M−1∑
i=0

‖pi −
L+N−1∑

j=0

djBN
j (

ti − uj

uj+1 − uj
)‖2 (1)

where‖ · ‖ denotesL2 norm, and

BN
j (ξ) =

N∑
k=0

ajkξN−k, j ∈ [0, L+N−1], ξ ∈ [0, 1] (2)

The minimization can be achieved by finding appropriate
{dj} and{ti}. N is the degree of the B-spline base function
{BN

j (ξ)}. M is the total number of discrete points.{ti} is
the parameter value for each point.{dj} are calledcontrol
points. The coefficients{ajk} of the B-spline base func-
tion can be determined by enforcing continuity of theN −1
derivatives at the end points of each segment. The points
connecting neighboring segments are calledknots, the pa-
rameters of which are denoted by{uj}. In addition to being
an efficient representation, B-splines have the advantages
of invariance to affine transformation, smoothing noise, and
natural decoupling ofx andy coordinates. Solving Eq.(1) is
a non-linear problem. However,{ti} can be initialized and
iteratively updated by heuristic methods [5]. Linear least
squares (LS) solution ford can then be obtained by:

d = H†p (3)

where “†” denotes pseudo inverse matrix computation through
singular value decomposition (SVD), and

Hj,k =
M−1∑
i=0

BN
j (

ti − uj

uj+1 − uj
)BN

k (
ti − uk

uk+1 − uk
) (4)

0 ≤ j, k ≤ L + N − 1
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3. USING B-SPLINES IN AFFINE CURVE
MATCHING AND ALIGNMENT

Given two curvesp and p̃, we want to decide if they are
affine related, and if so, to determine the specific transform.
We first consider the case where all curves are open curves
and ignore the occlusion problem. Closed curve matching
and occlusion problem will be addressed later in this sec-
tion. It is tempting to match two affine related curves by
their control points from their B-spline representations, us-
ing theaffine invarianceproperty. However, B-spline rep-
resentation of a curve is not unique, as different parameter
initializations may lead to quite different control point sets.
Therefore, there is no guarantee that the two control point
sets will relate to each other by the same affine transforma-
tion. Attempts to circumvent this difficulty have not been
very successful.

In this paper, we introduce a concept calledsuper-resolution
curveto solve this problem. Assume we know the transform
between the original and the transformed curves, they can
then be registered and superimposed upon each other in one
frame. This “combined” curve is called asuper-resolution
curve. We can then use a single B-spline to approximate this
super-resolution curve. The desired B-spline should match
the super-resolution curvein the original frame, while its
affine transform should match the transformedsuper-resolution
curve in the transformed frame. The advantage of using a
single B-spline to represent two curves is accuracy and ef-
ficiency. In comparison to the separate B-spline represen-
tation of two curves, thesuper-resolution curveprovides
twice the amount of data for improved accuracy, while a
single B-spline representation provides efficiency.

Since the transform is not known in advance, we can
estimate the B-spline and the transform parameters simulta-
neously using the concept ofsuper-resolution. We call this
approachB-spline fusion. It can be formulated as follows.
Using homogeneous coordinates, an affine transform can be
represented as:

A =

 a11 a12 a13

a21 a22 a23

0 0 1

 =

 aT
x

aT
y

0 0 1

 (5)

whereax = [a11 a12 a13]T anday = [a21 a21 a23]T . Its
inverse is

A−1 =

 a?
x

T

a?
y

T

0 0 1

 (6)

We seek the transformA and the control points{d} to

minimize ‖Hdx −
[

px

p̃?
x

]
‖ + ‖Hdy −

[
py

p̃?
y

]
‖

+ ‖H̃d̃x −
[

p?
x

p̃x

]
‖ + ‖H̃d̃y −

[
p?

y

p̃y

]
‖ (7)

In this equation,H is given by Eq.(4),dx anddy are the
x and y coordinates of spline control vertices for the orig-
inal curve in column vector form,px and py denote the
coordinates of the original point list in column vector form,
tilde, ·̃, denotes its affine transformed counterpart.p?

x and
p?

y denote the original point set mapped to the transformed
frame byA. p̃?

x and p̃?
y denote the transformed point set

projected back to the original frame byA−1. Since we use
the same B-spline in both the original frame and the trans-
formed frame, the control points̃dx andd̃y are related todx

anddy by the same affine transformationA. Specifically,

p?
x = [px py 1] ax

p?
y = [px py 1] ay

p̃?
x = [p̃x p̃y 1] a?

x

p̃?
y = [p̃x p̃y 1] a?

y

d̃x = [dx dy 1] ax

d̃y = [dx dy 1] ay (8)

We note that the sum of the first two terms in Eq.(7) is the B-
spline fitting error in the original frame, and the sum of the
last two terms is the B-spline fitting error in the transformed
frame. According to theaffine invarianceproperty of B-
spline fitting, a B-spline’s LS fitting to thesuper-resolution
curvein the original frame will guarantee its LS fitting to the
transformedsuper-resolution curve. In other words, mini-
mization of the first two terms in Eq.(7) is equivalent to min-
imization of the last two terms. Therefore, we only keep the
last two terms for minimization.

At this stage, we need to estimatet̃ contained inH̃, and
{d̃x, d̃y,ax,ay}. The non-linear parameters̃t can be ini-
tialized and updated similar to the approach in Section 2.
The linear solutions for{d̃x, d̃y,ax,ay} can then be ob-
tained by:

minimize fx(d̃x,ax) = ‖H̃d̃x −
[

P ax

p̃x

]
‖

and

minimize fy(d̃y,ay) = ‖H̃d̃y −
[

P ay

p̃y

]
‖

whereP = [px py 1], and separation of the two terms is
due to decoupling ofx andy coordinates. This leads to:{

ax = CDp̃x

d̃x = Dp̃x

{
ay = CDp̃y

d̃y = Dp̃y
(9)
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where


C = (PT P)†PT H̃1

D = (H̃T H̃− H̃T
1 PC)†H̃T

2

H̃ =
[

H̃1

H̃2

]
H̃1 is formed by the parameter values of(p?

x,p?
y), andH̃2

is formed by the parameter values of(p̃x, p̃y). It should be
pointed out that the linear LS solution for{d̃x, d̃y,ax,ay}
does not involve iteration. Iteration is involved only when
we need to update parameterst̃. No iteration is necessary
if the initial parameter values are accurate enough. The so-
lution usually converges to a good estimate within 5-10 it-
erations and to an accurate one within 20 iterations. Each
iteration takes about 1 second.

The approach as described above solves the curve match-
ing and alignment problem in one step. To find one or more
affine matches in a database, and then recover the affine
transform, all we need to do is to solve Eq.(7) for each curve
pair, and 5 to 10 iterations would reveal whether or not the
two curves match by thresholding the B-spline fitting error.
If the match is good, the iteration will continue until accu-
rate alignment is obtained. Otherwise, we move on to the
next pair.

Our approach also applies to partial curve matching. If
there is occlusion, each curve is segmented by using in-
flections and cusps which are invariant to affine transform.
Partial match then becomes possible by matching segments
of curves. Rough registration can therefore be obtained
for parameter initialization in the next B-spline fusion step.
Closed curve matching will be handled similarly as the oc-
clusion problem. We omit details here due to limit of space.

4. IMAGE REGISTRATION BY CURVE
MATCHING AND ALIGNMENT

Our approach to find the registration of a digitized original
image with a transformed image is summarized in the di-
agram of Fig. 1. Canny edge detector is used in our test.
Of the multiple curves found at this stage, curves that are
long enough (i.e., 50 pixels long) to be useful for match-
ing and alignment are selected. We first search for complete
curve matches with no occlusion. This can be achieved by
mapping each curve to a canonical frame, using two end
points and the geometric center as references (or correspon-
dences). A modified Hausdorff distance is employed to
measure similarity among curves. At this stage, subsam-
pling is used to speed up computation. The curve pair with
the smallest distance will be selected for the next stage. If
a good match is found, B-spline fusion will be performed
on the pair. Otherwise, we assume there is occlusion. Each
curve will be approximated by a B-spline. It is then seg-
mented by inflections and/or cusps. The segmented curves
in the original image will be matched with those in the trans-

formed image. The closest partial match will be found at
this stage and rough registration will be available to initial-
ize parameter valuest for the next step. The final B-spline
fusion step will then produce accurate alignment between
the two curves and therefore the registration between the
two images.

Edge detection
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Edge linking

Edge detection
and

Edge linking

Complete
curve matching
(assuming no

occlusion)

Good
match
found?

B-spline
approximation

Curve
segmentation
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Curve
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Fig. 1. Overall diagram for Image Registration

5. RESULTS

Our image registration technique has been tested on binary
as well as gray level images, and under noisy conditions.
Cases involving partial matches or closed curve matches
are also tested. The affine transform under the test is gen-
eral, which includes rotation, non-uniform scaling, trans-
lation and shearing. Due to limit of space, we only show
results using gray level images, with and without noise.

Fig. 2 shows our registration technique applied to a 256x256
gray level image, with i.i.d. Gaussian noiseN(0, σ2), σ2 =
256 added to the transformed image. The noise is rather
strong considering the image’s gray level range [0,255]. The
first row shows the original and the transformed images.
The transform consists of shearing in X direction by a fac-
tor of β = 1.0, 5 degrees rotation, scaling of 0.9 and 1.2 in
X and Y direction, 10 and 20 pixels translation in X and Y
direction respectively. The resulting transform matrix is

A =

 0.8966 0.8181 10.0000
0.1046 1.3000 20.0000

0 0 1.0000

 (10)

The second row in Fig. 2 shows the detected edges. The
third row shows the best curve match found. In this case,
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it is a partial match between two curves. The fourth row
shows rough registration by segment matching on the left,
and accurate registration recovered by B-spline fusion (with
two registered curves superimposed upon each other) on the
right. Convergence is achieved within 19 iterations.
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Fig. 2. Noisy gray level image registration results

We compare this result with that obtained without noise.
The estimated transform without noise is:

Â =

 0.8959 0.8193 9.9471
0.1041 1.3002 20.0889

0 0 1.0000

 (11)

The estimated transform under noisy condition is:

Â =

 0.8939 0.8172 10.3228
0.1028 1.3009 20.1979

0 0 1.0000

 (12)

We note that most estimated coefficients has achieved1%
accuracy. Â−1 is then applied to the transformed image
and the result is compared with the original image for reg-
istration error. The last row in Fig. 2 shows the back pro-
jected transformed image along with the difference between
the original and the back projected transformed image (with
the out-of-frame difference ignored). Darker color denotes
larger difference. The Gaussian noise in these images has
been removed for comparison purpose. The registration er-
rors are compared in Table 1. Under noisy conditions, all
the errors increased. However, the positional registration
mean squared error (MSE) is still kept within half a pixel.
This test demonstrates the robustness of our approach under
noisy conditions.

w/o noise with noise
Positional Reg. MSE 0.1216 pixel 0.3044 pixel
Positional Reg. Error Max 0.2895 pixel 0.5997 pixel
B-spline Approx. MSE 0.1980 pixel 0.3221 pixel
Pixel Value Reg. MSE 2.9154 3.9913

Table 1. Registration error statistics
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