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ABSTRACT

This paper relates a method to detect three-dimensional
(3D) symmetry axis from the fragment of a broken pottery
bowl, which is symmetric in the original status (that is,
before broken). Firstly, the fragment is extracted from the
range image by applying a bias processing, and its contour
is detected. Next, the corner points of the 3D fragment are
extracted from its contour. Then, the contour of the 3D
fragment is separated into 3D curve segments at the corner
points, and the partial mouth-edge is determined by
reasoning its center coordinates. Finally, by shrinking the
range image, a series of partial curves which are in
parallel with the partial mouth-edge, is obtained. The
symmetry axis is thought as a line passing through the
center points of these partial curves, in 3D space. We
tested this method by using the real-world range data. The
experiment results are satisfactory.

1. INTRODUCTION

As pointed by Weyl, symmetry is one idea by which man
through the ages hastried to comprehend and create order,
beauty, and perfection [1]. It plays a significant role in the
analysis and understanding of form by humans and it is
recognized as a necessary component of the successful
intelligent, autonomous system based on the principles of
computer vision, pattern recognition, and decision making.
Up to present, the studies about symmetry focuses on the
symmetry detection based on 3D data of the complete 3D
object [1] [2]. On the other hand, few work has been
conducted toward the symmetry identification of the
fragment that is originadly a part of a complete 3D
symmetry object. This need arises in the archaeological
application area where the problem is to reconstruct a
complete object from its fragments (or parts). Because
many artificial 3D objects such as pottery bowls, dishes,
vases and so on, are made based on the rotation-
manufacturing, their symmetry is represented by the
rotation axis. Therefore, for a broken pottery bowl, if its
rotation axis can be detected from its fragment, the
original shape can be reconstructed easily by tranglating
and rotating the fragments so that their axes overlap on the
same line and then performing rotation and matching
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operations. For the pottery bowl and vase, the symmetry
axisisthe same with that of rotation axis.

In the present paper, we propose a method for
reasoning the symmetry axis from the fragment of a
broken pottery bowl. In this method, the fragment in 3D
space is thought of as a thin surface that is represented by
the range image. The fragment is extracted from the range
image by applying a bias processing, and its contour is
detected. Next, the corner points of the 3D fragment are
extracted from its contour. Then, the contour of the 3D
fragment is separated into 3D curve segments at the
corner points, and the partial mouth-edge is determined
by reasoning its center coordinates. Finally, by shrinking
the range image, a series of partial curves which are in
parallel with the partial mouth-edge, is obtained. The
symmetry axis is thought as a line passing through the
center points of these partial curves, in 3D space. Details
are given in the following.

2. BOWL BROKEN PROCESS AND POTTERY
FRAGMENT SHAPE FEATURES

The problem we dea with in this paper can be described
asfollows.

[Problem] For a fragment, it is known to be a part of a
symmetric bowl, W, and its 3D shape is represented by 3D
point set, S, find the symmetry axis of Wfrom S.

In other words, this problem is to try to find the
symmetry axis of a complete bowl, W, from incomplete
3D points, S. Before solving this problem, let us see how
the pottery fragment is generated and what features the
pottery fragment has. Fig.1 (a) shows a pottery bowl in
good status. It has a perfect mouth-edge and a perfect
bottom-edge, shown by red circle and green circle
respectively, and a symmetry axis by blue. If it falls down
to the ground or collides with harder objects such as stone
or other bowls, it will be broken into several fragments.
Fig. 1 (b) shows its fragments after being broken, in which
the inner surfaces of them are upward. These fragments
have following features.

They can be roughly classified into two categories,
the boundary fragments and interior fragments. Boundary
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Symmetry axis

Fig. 1 (a) is a pottery bowl in good status, (b) shows
fragments of the bow! in (a) after being broken.

fragments are the fragments that contain, more or less, a
part of the mouth-edge. Interior fragments are the
fragments that do not contain any part of mouth-edge at
al. Usualy, the number of boundary fragments is bigger
than that of interior fragment. The fragments labeled 1, 2,
3and 4 in Fig. 1 (b) are boundary fragments, and 5 is the
interior fragment.

(i) If we focus on the edge (contour) of the fragment, it
can be separated into partial edges at the corner
points (see the points marked "Xx" on the fragment
labeled 1 in Fig.1 (b)). For the boundary fragment,
one of the partia edge is corresponding to a part of
the mouth-edge, that is called the partial mouth-edge
(e.g., the curve segment marked by the red line on the
fragment labeled 1 in Fig.1 (b)), others are generated
edges. Note that the partial mouth-edge exists in the
bowl in good status before being broken, and for the
interior fragments, all partial edges are generated
edges.

(ii) The partiad mouth-edge is a very smooth curve, more
specifically, it is a part of a circumference (or ellipse)
in 3D space.

The above features play important roles in symmetry
axis detection in the later sections. Here we limit to
discuss the symmetry axis detection from the boundary
fragments. And if no special explanation, the size of the
fragment is large enough that the symmetry axis does exist
in that fragment. Note that if the size of a fragment
becomes very small, the surface of the fragment is near to
aplane, in this case the symmetry axis will disappear.

3. PROPOSED ALGORITHM

Our algorithm to detect the symmetry axis from fragment
can be formulated in four steps. fragment extraction,
corner point detection, partial mouth-edge identification
and symmetry axis detection. These steps are explained in
greater detail in the following.

3.1. 3D Fragment Edge Extraction

Let F(x, y) represent the range data of the fragment F;,
output by the laser range finder, and B;(x, y) the contour of

F;, where x and y is the horizontal and vertical coordinates,
respectively. The value of Fi(x, y) lies in the range from
-90 mm to +90 mm to the reference plane. The reference
plane is 45 cm under the laser detector head. The positive
range data means that the target is over the reference plane,
and the negative under. The contour, Bi(X, y), is what we
want to determine from the range data, F(x, y). The
algorithm is as follows. Note that the Cartesian coordinate
system is employed in the following if no specific
declaration.

(1) Bias processing

For the range data, F(x, V), if the value at point (x,y) is
less than T,;.., the output is set to O, otherwise the output is
set to Fi(X, y) - T, Where T, is the threshold value
predetermined experimentally. From here on, if no
specific explanation, F;(x, y) means the range data after
the bias processing.

(2) Edge detection

Fi(x, y) is projected to the xy-plane to obtained its
silhouette. Let F'i(X, y) represent the silhouette of F(x, y)
to xy-plane, and B',(x(s),y(s)) the boundary curve of F'(x,
y), where sis a path-length variable along the curve. F';(x,
y) is generated in such a way that F',(x, y) is set to 255 if
Fi(x, y) > 0, otherwise to 0. B',(x(s),y(9)) is detected by
applying the boundary curve tracing algorithm [4]. Here
and after, B',(x(s),y(9)) is simply written as B';(x,y) if no
confusion. B'(x,y) is a closed digital curve in 2D space.
The value of B'(xy) is fixed at 255. B'j(x,y) is projected
back to the range data Fi(x, y), then we obtain the 3D
boundary curve, Bi(X, y), by setting the value of B(x, y) to
the range data, F(x, y), at point (x,y). Note that x- and y-
coordinates in B(X, y) are corresponding to x- and y-
coordinatesin B',(X, y).

3.2. Fragment Corner Point Detection

Our drategy to detect the fragment corner points is as
follows: Firstly, the dominant points of 2D boundary
curve, B(xy), are extracted. Then, corner points of the
silhouette image, F'i(x,y), are detected by applying the
filtering operation to the dominant points of B',(x,y). The
corner points of B',(x,y) are projected back to 3D space to
get the corner points of B(X, y).

(1) 2D dominant point detection

There have been many attempts to detect dominant points
[5] [6]. Among the proposed methods, the one devel oped
by Rattarangss and Chin, based on multiple-scale
curvature, is reliable and robust with respect to noise.
Therefore, we employ this method to detect the dominant
points. Details are referred to [5].

(2) Corner point detection

The 2D corner points are the special 2D dominant points
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in which the interior junction or boundary junction exists.
A triradial junction is the junction of three fragments. A
quadradial junction joins four fragments. 2D corner point
detection is a filtering operation. For k-th 2D dominant
point (k =0, 1, ..., N-1), if itsinterior angle is greater than
the threshold value T eion it IS discarded, where N is the
total number of the dominant points. After this filtering,
the left dominant points are considered as the 2D corner
points. Note that the interior angle at k-th dominant point
is the angle formed by three consecutive dominant points,
i.e., (k-1)-th, k-th and (k+21)-th dominant point (modulo N).
By projecting the 2D corner points to 3D space, we obtain
3D corner points of B,(x,y). Let us denote 3D corner points
by Sg ={C’ C!, ... N}, inwhichthex and y-
coordinates are corresponding to those of 2D corner points,
the value of Cik (k=0,1, ..., N-1) is set to the range data,
Fi(x,y), a the boundary point (X, y).

3.3. PARTIAL MOUTH-EDGE IDENTIFICATION

By taking the 3D corner points, { C°, C!, ..., cN™%},
as the separation point, the 3D boundary curve, B/(x, y), is
separated into a set of 3D partial curves by tracing the

corner points clockwise. Let E™™? express mth partial
curve in which m means initial corner point and m+1 the
terminal, and L™ express the length of mth partial

curve, that is the total number of the boundary points on
m-th partial curve. The partial curve set is expressed as

Se ={E™, B2, ... N 2N ENTMO) (modulo
N"), and the partia curve length set of the corresponding
partial curve set is denoted as S, = {Li01, Lilz,

N'-2,N'-1 | N'-10 .
L; v L } (modulo N),.

The partial mouth-edge has the following properties.
(i) It is a part of a circumference (or ellipse in general) in
3D space because the fragment is a part of a bowl; (ii) All
points on the partial mouth-edge lie on the same plane in
3D space. The partial mouth-edge recognition is based on
identifying its center coordinates and radius. Details are
shown below.

For the mth partial curve, E™™?, it is further

separated  into gmmKL

MM and EM2KML \where mra (a = K-1, K,
2K-1, 2K) means a-th boundary point from m-th corner
point, and K = L™™/ 3. Now taking one point from each

three curve segments,

Fig. 2 Circle and its center determined by three points.

of these three curve segments, i.e., P(rp0 E™™ KT,

Pr)0E™™2KT and pyryo E™H™L et us
check whether these three points lie on the circumference
of the same circle in 3D space or not. If they do, P,(r,),
P,(r,), Ps(r5) and the center C(c) of the circle will lie on
the same plane M in 3D space. Asshown in Fig. 2, let a =
r-r,andb =rgr,, thenormal vector of M is given by ax
b.and let r = c- ry, thenr(ax b) = 0. Moreover, the plane
M, passing the center C(c) and the middle point of ryr,
and perpendicular to E is expressed as (r-a/2)a = 0.
Similarly, the plane M, passing the center C(c) and the
middle point of ryr; and perpendicular to rir; isgiven
by (r-b/2)b = 0. The center C(c) is the cross point of three
planes, M, M, and M,. It is determined by

. b?(a® —ab)a+a’(b? -ab)b

c=r (1)
! 2laxb|?
Theradius of thiscircleis given by
2112 (a2 2
R=E|a||b| (a-b) % | (2)
4laxb]|
Note that the bold lower case letters are vectors in 3D
space.
By taking all triple points from the beginnings of
gmm+K-1 K m+2K-1 and gm+2K,m+l
I ’ | i ’

sequentially, their center coordinates and the radius of the
circle determined by the triple points are calculated. The
standard deviations of the radius and center coordinates
(x-, y- and z-coordinate) are calculated. If the total sum of
these standard deviations is smaller than a predetermined

threshold value Toomege Ei 1is considered as the

partial mouth-edge.
The plane M is reasoned according to least-square
method (LSM) as below. Let M be represented by

M: Ax+ By+ Cz+ D=0. 3

Because A, B, C and D are not linearly independent, they
cannot be determined uniquely. The equation (3) can be
rewritten as
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M: D(ax+ by + cz+ 1) = 0. 4

By setting D at constant value beforehand, a, b and ¢ are
obtained by solving the following equation.

Ax=b )

sziz XY Ixz{
where A=Fxy, Sy’ SyzO x=(a b, o
%Xizi SYiz yz”
and b = (-1)(Zx, Zy, 2z)", (X%, ¥, z) is the point on
EM™™ . The normal vector of M is given by
1

Vva? +b? +¢?

3.4 SYMMETRY AXIS DETECTION

n;, =(a,b,c)

(6)

The symmetry axisis alinein 3D space. Let Ly, express
the symmetry axis, it is obtained as follows. The silhouette,
F'.(x, y), is shrunk, and the processing described in section
3.1, 3.2 and 3.3 isrepeated. This operation is iterated until
the area of F',(x, y) becomes smaller than a predetermined
threshold value Tg,,. Then we obtained a series of center
points and normal vector according to equation (1) to (6).
Suppose the number of center points is N, the direction
vector of L, is given by

N =mnp =3 @

and the symmetry axisis determined as

L x—a:x—B:x—y ®)
I m n p

1 1 1
where a:WZXCi, ﬁzﬁzyci, y:WZZci and

(Xg» Yeir Z) iSi-th center point.
The pitch and yaw angle of L, are calculated,
respectively, as below,

f=cost—" __ p=cost—" . (9
m? + p? Jn? + p?

4. EXPERIMENT RESULTS

The agorithm was coded on Windows platform and the
programming language is MSVC++ ver 6.0. Values for
TbiaS' Tinterior! Trmuth-edge and Ts‘lh are 36 mm, 1650! 60 and
150 dots, respectively. Fig.3 (a) shows the picture of a
piece of fragment of a broken pottery bowl, (b) shows its
range image. The corner points are shown in (c). The
partial mouth-edges and center points are detected from
shrunk range image. The pitch and yaw angle of the
symmetry axis are 14.4° and 34°, respectively. The rotated
fragment with the mouth-edge upward is shown in (d).

We aso tested this algorithm with other real-world

J Symmetry axis :
© L 1

Fig. 3 (a) Photo of a piece of fragment; (b) Range image of
the fragment in (a); (c) Detected corner points; (d) symmetry
axis after being rotated.

range images. The algorithm works well.
5. CONCLUSIONS

This paper related a method to detect the symmetry axis
from the fragment of a broken pottery bowl. The
algorithm consists of fragment edge extraction, corner
point detection, partial mouth-edge identification and
symmetry axis detection. We tested the a gorithm with the
real-world 3D range images. The experiment results are
satisfactory. This agorithm can be applied in the
archaeological area where the problem is to reconstruct a
complete object from its fragments. This will be done in
the future.
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