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ABSTRACT

This paper describes a robust algorithm for arbitrary object
tracking in long image sequences. This technique extends
the dynamic Hough transform proposed in our earlier work
to detect arbitrary shapes undergoing affine motion. The
proposed tracking algorithm processes the whole image
sequence globally. First, the object boundary is represented
in lookup-tableform, and we then perform an operation that
estimates the energy of the motion trgjectory in the param-
eter space. We assign an extra term in our cost function
to incorporate smoothness of deformation. The object is
actualy rigid, so by ‘deformation’ we mean changes due
to rotation or scaling of the object. There is no need for
training or initialization, and an efficient implementation
can be achieved with coarse-to-fine dynamic programming
and pruning. The method, because of its evidence-based
nature, is robust under noise and occlusion.

1. INTRODUCTION

Most motion tracking techniques consider information in
the current frame plus a small number of previous frames
to predict the motion and structure parameters for the next
frame. In cases of fast moving objects, noise, and clutter,
the wrong decision at the current frame will compromise
tracking of the object for subsequent frames; only a global
processing technique can give the optimal result. Apart
from the vel ocity Hough transform and the dynamic Hough
transform there are no efficient algorithms in the literature
to find the optimal trgjectory [1, 2]. Our approach provides
a method of integrating shape extraction within an energy
maximization framework. It defines the object to be tracked
interms of maximaof amotion trajectory with an associated
energy function. The choice of this energy function is a
compromise between evidence from image data and inte-
gration of motion and deformation constraints. An energy
maximization method is required to extract the desired
motion trajectory and determine the structure parameters of
the object. Our method seeks a global optimum.
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2. PROBLEM STATEMENT

Let us consider an image sequence as a three-dimensional
space (z,y,t) comprising two spatial dimensions (z,y)
corresponding to every image plane and one temporal di-
mension ¢. Then in this space, a moving object generates
atrajectory. Hence the determination of the moving object
amounts to the determination of the motion trajectory by
processing globally the image sequence. The motion trajec-
tory tries to link points—potential centroids of an object—
according to local measures of continuity and smoothness
and specifically continuity in direction, displacement, and
deformation. Such quantities tend to be locally smooth, but
can change dramatically from the first to the last frame.
They should be consistent with the observed data. Such
problems can be naturally formulated in terms of energy
maximization.

Maximization methods attempt to model global image
properties, i.e., characteristics of the moving object that
cannot be captured by local correlation techniques or with
parametric motion models. We consider a very general
definition of smoothness which can accommodate not only
irregular sampling but also missing data. Furthermore,
pairwise interactions of adjacent points on the trajectory
contribute to aglobal nature of the smoothness.

As a shape coding method, we use the generalized
Hough transform (GHT) [3, 4]. The image seguence is
pre-processed, first applying an edge detection algorithm
to each frame, and then transforming into a 5-dimensional
parameter space P(u, v, 0, s,t) where (u, v) is the position
of the centroid, 6 is the orientation, s is the scale factor
of the object, and ¢ is the time index for each frame,
1 <t < N. The motion trajectory is represented by a set
of discrete points in each frame, where we can consider the
speed and direction of a point at frame ¢ to be;

Vi = V(@1 —2)2 + (Y-1 — y1)? )
¢t = arctan {M} 2
(mtfl - Slft)
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where (z;—1,y:—1) and (x¢,y:) are the locations of the
point in frames (¢ — 1) and ¢t. The problem is to determine
the trgj ectory which satisfies some appropriate energy crite-
rion in this space.

3. ENERGY REPRESENTATION

An energy function to assess the fithess of any tragjectory can
be considered to have the following three terms: (a) Hough
energy representing the points of the parameter space with
maximum structure evidence; (b) motion energy determined
by the smoothness of velocity and direction of the motion
trgjectory [5]; (c) deformation energy representing the vari-
ations of the object over time, scale and orientation. We
consider the latter two terms to have equa weight in the
energy formulation, so that:

Etraj = wy EHough — W2 (Emotion + Edef) (3)

where w; and w- are weights that can be adjusted to vary
the relative importance of each term.

The first term forces the trgectory to pass through
the points in the parameter space with maximum structure
evidence, using the specific form:

N
EHough = § 43
t=1

which ssimply adds the peak values, p,, of the accumulator
space through which the trgjectory passes. The motion
energy representsthe elasticity and rigidity of thetrgjectory,
and has the form:

N-1 N-1

Erotion = Z H/t—l - VYt| + Z |¢t—1 - ¢t|
t=2 t=2

where V; and ¢, are as in equations (1) and (2). The
first term penalizes the points in the parameter space which
correspond to large changes in speed, and the second term
penalizes large changesin direction.

The deformation energy expresses the smoothness of
deformation, which means that the object will deform in
size and orientation gradually during time. Thisenergy term
favors small changesin orientation and scale and penalizes
abrupt changes. It is given by:

N-1 N-1
Baer = Y |sto1—2si+ 51| + Y 611 — 20, + 0,41
t=2 t=2

where s; and 6; are the scaling factor and orientation
of the object at frame ¢t. To find the optimal trgectory
that maximizes the cost function (3), we apply a dynamic
programming (DP) scheme [6].

4. OPTIMIZATION

Following our previous work [2], the optimization problem
to find the parameters of P(u,v,8, s,t) isefficiently solved
using dynamic programming. DP allows the introduction of
constraints that cannot be violated, called hard constraints,
as well as second-order continuity constraints, which are
inherent in the energy formulation. These latter are known
as soft constraints because they are not satisfied absolutely,
only to a certain degree. We divide the optimization
problem into stages, corresponding to frames, with a policy
decision required at each, namely to maximize the energy
function. Each stage has a number of associated state vari-
ables. In our case, these are the weighted features, pointsin
the parameter space (i.e., peaks of each accumulator array).
For each trgjectory, we associate an energy function:

E =E(x1,22,-..,T¢,.--,TN)

where z1, s, ...,z N are the state variables, or the points
in the parameter space. Because we wish to represent the
smoothness of motion and deformation, we introduce a
time lag, or delay in our system; therefore, the principle
of optimality is not applicable. Hence, to overcome this
difficulty, we implement a time-delayed DP agorithm, in
which the two-element vector of state variables, (z, z;+1),
is fixed. So the energy function can be written:

E=Ei(z1,22,23) +... + En_o(2N_2,ZN_1,ZN)

The recursion that relates the cost or reward earned
during previous stages is a function of two temporal state
variables of the form:

R q(xi—1,2¢) +

Ri(xs, @ = max
(7, Te41) Ei 1(xi—1,%¢,%441)

(It—l,It)

5. IMPLEMENTATION ISSUES

The global evidence-based search technique considers all
possible peaks in the Hough space, even those with zero
value, to find the optimal smooth trgjectory. Use of Hough
techniques avoids the need for initiaization, which can
contribute to major error in other approaches. The mation
trgjectory problem involves finding the possible correspon-
dence of featuresamong frames. This correspondence prob-
lem is combinatorially explosive even with a DP scheme.
To cope with the complexity of this problem, we need
to perform a constrained search. Fortunately, the local
connectivity of the motion tragjectory can be exploited to
reduce the computationtimedramatically. A search window
(a hard constraint set by knowledge of the maximum and
minimum allowable speeds) determines the extent to which

11 - 502




the motion trajectory is allowed to stretch or bend at that
point. These constraints are employed to prevent impossible
motion trajectories, and are both qualitatively and computa-
tionally beneficia [7].

Besides maximum and minimum vel ocity, further con-
straints should be introduced to control the amount of defor-
mation. This means that the object scaling and orientation
cannot exceed some maximum predefined values. The
principle of smoothness of deformation exploits the fact
that, because of inertia, the size and rotation of the object
cannot change instantaneously. This assumption will be
valid for all moving objects. Provided the sampling rate
is high enough, the changes in scale and orientation will
be gradual. Thus, we introduce some further constraints
that enable us to perform a limited search in a smaller
temporal neighborhood of the parameter space, so reducing
the complexity of the problem.

The time complexity of the DP scheme can be reduced
further by employing an absolute pruning technique. We
perform a two-step search. Initially, we calculate the best
trajectory that passes though the points of the parameter
(Hough) space considered alone. By a backtracking proce-
dure, we then prune al points in the parameter space lying
on trajectorieswith an energy smaller than athreshold value
(equal to 0.8 of the maximum energy in this work). Hence,
we reduce dramatically the sol ution space, and subsequently
we can perform a more extensive search considering the
motion and deformation terms as well. This is done with
wi = 0.8 and w, = 0.2 in equation (3). Further time and
memory reductions can be achieved using the coarse-to-
fine DP agorithm [8] whereby we form a series of coarse
approximations by aggregating states into superstates. For
each coarse approximation, the optimal trajectory is found
using DP. The superstates along this optimal trajectory
are noted and the process is iterated until the optimal
path is found. This idea can be simply adapted to our
5D optimization problem. In each frame, we merge state
variablesto form 5D hyperstate variables.

6. SSMULATIONSAND RESULTS

Two simulations were carried out: one to test performance
in the presence of noise and the other to test robustness
to object occlusion with a small amount (10%) of noise.
Image sequences were synthesized so that for each frame
of the sequence, the quantity of noise present or occlusion
bar width is known. In both cases, the generated sequence
is binary. The error measure employed is the root mean
square error of the estimated parameters relative to ground
truth, averaged over 50 trias (i.e., different seed for the
pseudorandom noise generator).

The first simulation was designed to quantify the noise
performance of the new tracking agorithm compared with

Fig. 1. Typical frames from image sequences showing the
arbitrary object with 4%, 12%, 20% and 28% added noise.

Fig. 2. Typica frames showing the arbitrary object oc-
cluded with bars of width 20 pixels and 48 pixels (with
10% noise).

the GHT. Each image of a 32-frame sequence consisted
of 320 x 280 pixels. The object to be tracked has arbitrary
shape and moveswith constant linear velocity inthe x direc-
tion, and is rotated and scaled at a constant rate through the
image sequence. The added noise had a uniform probability
density function; affected pixels had their polarity inverted.
The level of noise varied from 0% to 30% in 2% incre-
ments. Figure 1 shows typical frames for a representative
range of added noise. In the occlusion simulation, the
object was moving with the same parameters as before, but
we added an occlusion bar in the middle of each frame.
The width of the occlusion bar varied from 0 to 60 pixelsin
4 pixel increments. The object dimensionis26 x 25 pixels,
and it movesby 10 pixels per frame. The 11-frame sequence
consisted of 320 x 280 pixelsand the object in some frames
is partialy or totally occluded by the bar (Figure 2).
Asshownin Figures 3 and 4, our method offers superior
performanceover the GHT for simulationswith added noise
and occlusion, especialy for the more demanding condi-
tions. Thus, despite total occlusion over several frames, we
can still track the occluded object with low error (Fig. 4).

7. CONCLUSIONS

Robust tracking of objects in noise is an outstandingly
important problem in computer vision. We have considered
the tracking of a moving object as an energy maximization
problem. That is, the motion trajectory is represented by
an energy function with an image-dependent term, a term
penalizing large changes in velocity (speed and direction)
and a second-order smoothness term. This is then maxi-
mized over the image sequence using time-delay dynamic
programming to exploit the temporal correlation between
adjacent points in the motion trgjectory and so determine
the globa optimum. Efficiency can be improved using
coarse-to-fine DP with pruning of points on trajectories
below some energy threshold in Hough space. The method
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Fig. 3. Comparison of the noise performance of GHT and
energy-based tracking. Top: rotation error; Middle: scale
error; Bottom: trandation error. Error bars are standard
deviations over 50 trials.

gives superior results compared to the standard generalized
Hough transform and proved to be especially robust under
noise and occlusion.
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