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ABSTRACT object and also its interaction with all other objects of interest.
Shapes defined as all the geometric information that remains
when location, scale and rotational effects are filtered out [2]. Thus
our shape based activity inference method would be invariant to
scaling, translation or in-plane rotation of the configuration of ob-

Monitoring activities in a certain region from video data is an im-
portant surveillance problem today. The goal is to learn the pat-
tern of normal activities and detect unusual ones by identifying ac-
I/Ivveltlslig]c?st ed 2‘;:?;;22&0ﬁsbih’gfrggtit;?czpézipoenfﬁ e' (I)rr1yt TS’ agi%egdects (agsuming orthographip prpjection which is valid when the
Kendall's shape model) [3]. In a low resolution video each moving camera _'S .assumed to be atinfinity). )

object is best represented as a moving point mass or particle. In ~ Statistical shape theory has been an independent area of re-
this case, an activity can be defined by the interactions of all or Search by itself [2, 3] which began in the late 1970s and evolved
some of these moving particles over time. We model this configuiNto practical statistical approaches for analyzing objects using
ration of the particles by a polygonal shape formed from the loca- Probability distributions of shape. Off late, it has been applied to
tions of the points in a frame and the activity by the deformation of SOMe problems inimage analysis. In [4], the author used statistical
the polygons in time. These parameters are learnt for each typical Shape analysis for identifying landmarks on face images. Dryden
activity. Given a test video sequence, an activity is classified asand Mardia give examples of shape analysis in object recognition
abnormal if the probability for the sequence (represented by the @nd image morphing [2]. All these examples, however, model the
mean shape and the dynamics of the deviations), given the modethape of a single object in static images.

is below a certain threshold. The approach gives very encourag- ~ Our work presents an approach for extending this method to
ing results in surveillance applications using a single camera and modeling the shape formed by the locations of a group of moving
is able to identify various kinds of abnormal behaviors. objects in an image. We represent a video sequence of an ‘activ-
ity’ of moving objects by the average shape formed by the mov-
ing objects in any frame and deformations from it over time. In
describing the motion of a deforming shape, we need to separate
the effect of the global motion of the shape from its deformations.
Extending Soatto’s idea of static and dynamic deformable shapes
[5], we define a “static shape activity” as one in which the shape
formed by the moving particles remains almost constant with time
(except for small deformations). In this case, there is not much in-
formation in the global motion parameters (translation, scale and
rotation) and the activity can be represented by the mean “shape”
nd allowed range of deformations in different directions. The de-
rmation process can be assumed to be stationary and ergodic. A
ynamic shape activity” on the other hand is represented by the

. . attern of global motion and/or deformation as a function of time.
In this paper, we propose a different approach to the problem P g

using Kendall's statistical shape theory [3]. In a low resolution Most of Ehe kjnd of activit?e_s \,’,Ve are !ntgrested in.can be mod-
video each moving object is best represented as a moving pOimeled by the _statlc shape activity” description. _ConS|der as an ex-
mass or particle. In this case, an activity can be defined by the@MPI€, the video sequence of passengers getting out of a plane and
interactions of all or some of these moving particles over time. moving towards the terminal (see figure 1 (a)). All passengers are
We model this configuration of the particles by a polygonal shape supposed to follow the same path from the plane_ to the terml_nal. If
formed from the locations of the points in a frame and the activity one were to look at the shape fqrmed by connecting thellocatlons of
by the deformations of this mean shape over time. It provides aa” the passengers atany time |n§tapt It v_vould look similar, except
global framework to model interactions between multiple moving ToédﬂorT&\l/t\'lor;s duehto small v?]rlatlonfs ;]n thel path tfaken S{)eaﬁh
objects over time. By contrast, a traditional activity modeling ap- ndvidual. We learn the mean shape of the polygon formed by the

proach, like [1], would have to learn the motion pattern of each locations of the passengers in any frame. The deviations from the
mean shape are projected into a linearized space about the mean

Partially supported by the DARPA/ONR Grant N00014-02-1-0809  shape and covariance of the deviations in this linear space is learnt.

1. INTRODUCTION

Monitoring activities in a certain region from video data is an im-
portant surveillance problem. The goal is to learn the pattern of
normal activities and detect unusual ones by identifying activities
that deviate appreciably from the normal ones. In [1], the authors
proposed building a tracking and monitoring system using a “for-
est of sensors” distributed around the site of interest. Their ap-
proach involved tracking objects in the site, learning typical mo-
tion and object representation parameters (e.g. size and shapeT
from extended observation periods and detecting unusual events ir.)d
the site.
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The dynamics of the deviations is learnt by fitting a Gauss Markov of full Procrustes distances from each shapén the population
model. An abnormal activity is detected in a given test sequenceto the unknown mean shape,
of L frames if the probability for the sequence (represented by the

mean shape and the dynamics of the deviations), given the model, L . 2y,
is below a certain threshold. We are able to identify “spatial” ab- p=arg Iﬁf Z dr™(Yi, p). C)
normalities, e.g. deviations from the normal path, as well as “tem- i=1

poral” abnormallities, e.g. sudden stopping for prolonged periods |t has been proved in [11] that the full Procrustes mean shae

of time when the normal activity should be continuous motion. e found as the eigenvector corresponding to the largest eigenvalue
In addition to the above shape modeling technique (referred of the matrix5 = > zv,zy,. Obtaining the full Procrustes

to as Kendall's shape theory), there exists a huge body of work inmean and aligning all shapes in the dataset to it (by finding their

the vision community on shape tracking, analysis and similarity procrustes fit to the mean) is known @gneralized Procrustes

[6, 7, 8, 9, 10]. Many of these methods rely on identifying local Analysis

geometric properties of the contours of the shapes.
2.3. Shape Variability in Tangent Space

2. SHAPE THEORY PRELIMINARIES To examine the structure of shape variability from the average
shape, we define a linearized space (tangent space) about the mean
In this section we briefly explain the basic tools for statistical shape shape and consider variance in the linearized space. The pre-shape
analysis as described by Kent and Mardia in [2] which we use in formed byk points lies on a complex hypersphere of unit radius.
this paper. We use Kendall's representation of a shape configura-The aligned pre-shapes (after generalized Procrustes analysis) of
tion in . dimensional space as tfhex m matrix formed by the  a dataset of similar shapes would lie close to each other and to

locations ofk landmark points on each specimen. For= 2 their Procrustes mean on this hypersphere. Thus the tangent hy-
dimensional shape a more convenient representatiok imen-  perplane at the mean is a approximate linear space to represent
sional complex vector with real and imaginary parts representing this dataset and so in this space, standard linear multivariate anal-
thez andy coordinates of the point. ysis techniques can be applied. In this paper, we define a linear

Gauss Markov model on the time series of the tangent coordinates
of the shape in consecutive frames.

The Procrustes tangent coordinates [2] of a pre-shapéak-
Pre-shapés the geometric information that remains after location iNg the Procrustes mean as the pole for the tangent projection, are
and scaling information has been filtered out. Centered pre-shapdiven by
() can be obtained by subtracting out the mean of the complex

2.1. Normalization

%14 70
vector of landmark pointsX) and scaling to norm one i.e. v(z,p) = [I—pp’lBe’”z
; = z2zp—plpl 4)
CcX 11y
z=—=——, WhereC =1 — , 1
lIcX|| k @) 3. “SHAPE” ACTIVITY MODEL

I, is ak x k identity matrix andl, is ak dimensional vector of  Any activity in which all the particles are identical (have identi-
ones. cal expected trajectories) will classify as a “static shape activity”.
In our experiments we have looked at the "activity” of passengers
getting out of a plane and walking towards the terminal where this
assumption is satisfied. Also under the identical particles assump-

A concept of distance between shapes is required to fully define thelion: the shape formed lyor p+1 moving particles does not look

non-Euclidean shape metric space. The shape is non-Euclidean bd20 different. Since Kendall's shape analysis methods (discussed
cause of the scaling to norm one. Tiodl Procrustes distancg] above) are for a fixed number of points, we resample the curve

of a complex configuration& from Y is given by the Euclidean connecting the points to represent it by a fixed number of pdints

distance between the full Procrustes fit of the preshapgé (fx) without deforming the shape appreciably.
onto the preshape af (zy). The z and y coordinates of each point are represented as a

Eull Procrustes fifis chosen to minimize complex number and thus the positionskoparticles form ak-
dimensional complex vector. The complex vectors of shape con-
figurations of particles at a timeare normalized as described in
section 2.1. Generalized Procrustes analysis (discussed in section
2.2) on this sequence of normalized pre-shapes returns a mean
shape for the sequence (using stationarity assumption here). Since
deviations from mean shape are small, the normalized shapes can
be projected into the tangent space (hyperplane) at the mean using

2.2. Distance between shapes

d(Y,X) = ||zy — 2xBe’’ — (a + jb)1i||, 2

where 3 is a scalef is the rotation anda + jb) is translation.
Full Procrustes distancdz (Y, X) is this minimum distance i.e.
dr(Y,X) = infg .4, d(Y,X). Since the pre-shapes and

zx have already been normalized for translation and scale, theequation 4).

translation value that minimize(Y, X), @ + jb = 0 and the Now, the vector of tangent coordinates is a compileimensional
scale,3 = |zxzv| is very close to one. The rotation angle, vector. We string the real and imaginary parts of this vector to ob-
0 = arg(zxzy). (See chapter 3 of [2] for details) tain a2k-dimensional real vector. Now since the pre-shape has
For a population of similar shapes, a full Procrustes mean been normalized for translation, it actually lies iBfa— 2 dimen-
shape [) is obtained by minimizing (ovet) the sum of squares  sional (real) space. Since the tangent coordinates are obtained by
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projecting the aligned preshapes perpendicular to the (complex)where (a) follows from the Markovian assumption and (b) follows
Procrustes mean shape, the dimensionality of the tangent space isom equations (9).

actually 2k — 4 real dimensions. The rest of the analysis given
below is performed in @ — 4 dimensional real space (which is
equivalent to & — 2 dimensional complex space).

3.1. Dynamical Model in Tangent Space

Let the vector of tangent coordinates be represented;. byhe

origin of the tangent hyperplane is chosen to be the tangent coor-

A given test sequence is said to be generated from the normal
activity if the probability of occurrence of its tangent projections
(in the tangent plane generated by the activity mean) using the
above pdf is high. Thus the “distance to activity” metric for an L
frame sequencéy, is

dL(t + L — 1) = —lng(Ut, V41, ~-~Ut+L—1)

dinate of the mean and hence the data projected in tangent space = v; 5 v + 3.7 ! (v, — Av, 1) 25 (e — Ave—i).
has zero mean by construction. The time correlation between the

tangent coordinates is learnt by fitting a one sBguss Markov
model, i.e.
E[’Ut] = 0

Avi—1 + n, 5)

wheren; is a zero mean i.i.d. Gaussian process anis indepen-
dent ofv_1.

Ut =

Since the activity is assumed to be stationary and ergodic, we

can evaluat&, for any timet as

T

* 1 *

¥, = Elnv{] = T E vy (6)
t=1

T=t+1

We test for abnormality at any tinteby evaluatingi;, for the past
L frames i.e. evaluatd, (t) = —logf(ve—r+1, .. V¢—1, V¢).

Now, if one looks at the eigenvalues Bf,, there are 5-6 di-
mensions of “almost” zero variance (eigenvalues much smaller
than the rest). One could choose these directions to represent the
Approximate Null Space (ANS) of the data. If data from the same
activity is projected in these dimensions it will be very close to
the origin with very high probability (follows from Chebyshev’s
inequality [12]) while this will not happen in general for data from
any outside the ‘normal activity class’ [13]. We use this idea
to analyze tangent space data projected along the ANS using the
same activity metric as defined above but applied only to the 6-
dimensional ANS space data. The difference between the values
of the activity metric for normal and abnormal activity is now more

Also a minimum mean square error (MMSE) estimate of A (using pronounced and computed at a reduced computational cost.

stationarity assumption) can be evaluated as
A = 3T,1x37' where

T
* 1 *
Y1 = E[Utvt—l]:T—_l E VtVg_1. (7)
t=2

Using A = A and ergodicity assumption, the noise covariance

matrix can be calculated

En = E[(’l)t —Avtfl)(vt —Avtfl)*]

T
-7 1_ 1 Z(Ut — Avi_1)(ve — Avi_1)*. (8)
t=2

Thus given a training sequence, we can use the above equa-

tions to estimate&,, A andX,. These parameters can then be

4. EXPERIMENTAL RESULTS

We use a video sequence of passengers getting out of a plane and
walking towards the terminal as an example of a “static shape ac-
tivity” to test our algorithm. We test the performance of the al-
gorithm on simulated spatial and temporal abnormalities. Spatial
abnormality (shown in figure 1(b)) is simulated by making one
particle deviate from its original path and then move back. This
simulates the case of a person deciding to not walk towards the
terminal. Temporal abnormality is simulated by fixing the loca-
tion of a particle thus simulating a stopped person (which can be a
suspicious activity too).

Given a test sequence, at every time instamte apply the
activity metric to the pasL frames withL = 20 i.e. dx(t) =

used to test if any subsequence comes from the trained activity or—log f(v¢—19,v¢—18,...v¢+). ReducingL will detect abnormality

not.

3.2. Testing

Using the stationary Gauss Markov model described above,

N(0,%,), Vt
N(Avi, Z,). 9)

Thus anyL length sequencé(arbitrary) of tangent projections of
test data would have a jointly normal distribution with pdf

Ut ~

Ut+1|Ut ~

(a)
Foe, ves, wvisn—1) = f(oe) f(vigr]oe).o. f(vegr—1|vesr—2)
® 1 ( 1
TV emRotn, |/ (2m)2k =4 s, |

_ t+L—1 —
vy BT et ) T (o= Ave )57 (vr —Avs 1)

exp(— 2 )7

)L*l

faster but will reduce reliability.

In figure 2(a), the blue solid and dashed lines are the activity
plots for two sequences of normal activity. The solid line is for the
data we trained on and the dashed one is for a new ‘normal’ test se-
guence. In both these cases the metric remains below 200 (chosen
as the ‘normality’ threshold) except betwees 120 to ¢ = 140.

The red circles plot is for the case of a temporal abnormality (one
stopped particle). The particle is stopped at 40 but it takes a

few frames before the contour starts deforming and some lag be-
causeL = 20. In figure 2(b) we compare the normal activities
with the spatial abnormality. The green stars plot is for the spatial
abnormality (one particle deviating from its expected path). This
is also started at = 40 but gets detected faster because the con-
tour starts deforming almost immediately. Due to lack of space,
we have shown the activity metric plots only for tangent vectors
projected in the 6 dimensional approximate null space (ANS) of

(10) the normal activity.
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Frame 7685
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Fig. 1. (a): A ‘normal activity’ frame with 4 people, (b): Contour distorted by spatial abnormality
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Fig. 2. Plots of the activity metricd2o(t)) for normal and ab-
norm al activities: (a) compares normal activities with temporal [10]

abnormality and (b) shows the plot for spatial abnormality
(11]

5. CONCLUSION [12]

(13]

In this paper, we have proposed a method for representing activity
in low resolution video data where moving objects are modeled as
point masses. We look at the shape formed by the configuration
of the point objects at a given time instant and model activity by
the mean shape and deformation of the mean shape over time. The
deviations from mean shape are projected into a linearized space
where we represent the dynamics of the activity using a stationary
Gauss-Markov model. Experimental results of this method have
been presented. As part of our future work, we will model the
effect of observation noise and use a sequential Monte Carlo algo-
rithm to solve the partially observed state problem.
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