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ABSTRACT

Monitoring activities in a certain region from video data is an im-
portant surveillance problem today. The goal is to learn the pat-
tern of normal activities and detect unusual ones by identifying ac-
tivities that deviate appreciably from the typical ones. In this paper
we propose an approach using statistical shape theory (based on
Kendall’s shape model) [3]. In a low resolution video each moving
object is best represented as a moving point mass or particle. In
this case, an activity can be defined by the interactions of all or
some of these moving particles over time. We model this configu-
ration of the particles by a polygonal shape formed from the loca-
tions of the points in a frame and the activity by the deformation of
the polygons in time. These parameters are learnt for each typical
activity. Given a test video sequence, an activity is classified as
abnormal if the probability for the sequence (represented by the
mean shape and the dynamics of the deviations), given the model
is below a certain threshold. The approach gives very encourag-
ing results in surveillance applications using a single camera and
is able to identify various kinds of abnormal behaviors.

1. INTRODUCTION

Monitoring activities in a certain region from video data is an im-
portant surveillance problem. The goal is to learn the pattern of
normal activities and detect unusual ones by identifying activities
that deviate appreciably from the normal ones. In [1], the authors
proposed building a tracking and monitoring system using a “for-
est of sensors” distributed around the site of interest. Their ap-
proach involved tracking objects in the site, learning typical mo-
tion and object representation parameters (e.g. size and shape)
from extended observation periods and detecting unusual events in
the site.

In this paper, we propose a different approach to the problem
using Kendall’s statistical shape theory [3]. In a low resolution
video each moving object is best represented as a moving point
mass or particle. In this case, an activity can be defined by the
interactions of all or some of these moving particles over time.
We model this configuration of the particles by a polygonal shape
formed from the locations of the points in a frame and the activity
by the deformations of this mean shape over time. It provides a
global framework to model interactions between multiple moving
objects over time. By contrast, a traditional activity modeling ap-
proach, like [1], would have to learn the motion pattern of each
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object and also its interaction with all other objects of interest.
Shapeis defined as all the geometric information that remains

when location, scale and rotational effects are filtered out [2]. Thus
our shape based activity inference method would be invariant to
scaling, translation or in-plane rotation of the configuration of ob-
jects (assuming orthographic projection which is valid when the
camera is assumed to be at infinity).

Statistical shape theory has been an independent area of re-
search by itself [2, 3] which began in the late 1970s and evolved
into practical statistical approaches for analyzing objects using
probability distributions of shape. Off late, it has been applied to
some problems in image analysis. In [4], the author used statistical
shape analysis for identifying landmarks on face images. Dryden
and Mardia give examples of shape analysis in object recognition
and image morphing [2]. All these examples, however, model the
shape of a single object in static images.

Our work presents an approach for extending this method to
modeling the shape formed by the locations of a group of moving
objects in an image. We represent a video sequence of an ‘activ-
ity’ of moving objects by the average shape formed by the mov-
ing objects in any frame and deformations from it over time. In
describing the motion of a deforming shape, we need to separate
the effect of the global motion of the shape from its deformations.
Extending Soatto’s idea of static and dynamic deformable shapes
[5], we define a “static shape activity” as one in which the shape
formed by the moving particles remains almost constant with time
(except for small deformations). In this case, there is not much in-
formation in the global motion parameters (translation, scale and
rotation) and the activity can be represented by the mean “shape”
and allowed range of deformations in different directions. The de-
formation process can be assumed to be stationary and ergodic. A
“dynamic shape activity” on the other hand is represented by the
pattern of global motion and/or deformation as a function of time.

Most of the kind of activities we are interested in can be mod-
eled by the “static shape activity” description. Consider as an ex-
ample, the video sequence of passengers getting out of a plane and
moving towards the terminal (see figure 1 (a)). All passengers are
supposed to follow the same path from the plane to the terminal. If
one were to look at the shape formed by connecting the locations of
all the passengers at any time instant it would look similar, except
for deformations due to small variations in the path taken by each
individual. We learn the mean shape of the polygon formed by the
locations of the passengers in any frame. The deviations from the
mean shape are projected into a linearized space about the mean
shape and covariance of the deviations in this linear space is learnt.
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The dynamics of the deviations is learnt by fitting a Gauss Markov
model. An abnormal activity is detected in a given test sequence
of � frames if the probability for the sequence (represented by the
mean shape and the dynamics of the deviations), given the model,
is below a certain threshold. We are able to identify “spatial” ab-
normalities, e.g. deviations from the normal path, as well as “tem-
poral” abnormalities, e.g. sudden stopping for prolonged periods
of time when the normal activity should be continuous motion.

In addition to the above shape modeling technique (referred
to as Kendall’s shape theory), there exists a huge body of work in
the vision community on shape tracking, analysis and similarity
[6, 7, 8, 9, 10]. Many of these methods rely on identifying local
geometric properties of the contours of the shapes.

2. SHAPE THEORY PRELIMINARIES

In this section we briefly explain the basic tools for statistical shape
analysis as described by Kent and Mardia in [2] which we use in
this paper. We use Kendall’s representation of a shape configura-
tion in � dimensional space as the� � � matrix formed by the
locations of� landmark points on each specimen. For� � �
dimensional shape a more convenient representation is a� dimen-
sional complex vector with real and imaginary parts representing
the� and� coordinates of the point.

2.1. Normalization

Pre-shapeis the geometric information that remains after location
and scaling information has been filtered out. Centered pre-shape
(�) can be obtained by subtracting out the mean of the complex
vector of landmark points (�) and scaling to norm one i.e.

� �
��

������ 	 where � � 
 � ����
�

�
	 (1)


� is a� � � identity matrix and�� is a� dimensional vector of
ones.

2.2. Distance between shapes

A concept of distance between shapes is required to fully define the
non-Euclidean shape metric space. The shape is non-Euclidean be-
cause of the scaling to norm one. Thefull Procrustes distance[2]
of a complex configurations� from � is given by the Euclidean
distance between the full Procrustes fit of the preshape of� (�� )
onto the preshape of� (�� ).

Full Procrustes fitis chosen to minimize

���	 �� � ���� � ��
�
�� � �� � �������	 (2)

where
 is a scale,� is the rotation and�� � ��� is translation.
Full Procrustes distance,�� ��	 �� is this minimum distance i.e.
�� ��	 �� � ��	�	�	
	� ���	 ��. Since the pre-shapes�� and
�� have already been normalized for translation and scale, the
translation value that minimize���	 ��, 
� � �
� � � and the
scale, 

 � ������ � is very close to one. The rotation angle,

� � ��������� �. (See chapter 3 of [2] for details)

For a population of similar shapes, a full Procrustes mean
shape (
�) is obtained by minimizing (over�) the sum of squares

of full Procrustes distances from each shape�� in the population
to the unknown mean shape,�


� � �
� ��	



��

���

��
����	 ��� (3)

It has been proved in [11] that the full Procrustes mean shape
� can
be found as the eigenvector corresponding to the largest eigenvalue
of the matrix� �

��

���
����

�
��

. Obtaining the full Procrustes
mean and aligning all shapes in the dataset to it (by finding their
Procrustes fit to the mean) is known asGeneralized Procrustes
Analysis

2.3. Shape Variability in Tangent Space

To examine the structure of shape variability from the average
shape, we define a linearized space (tangent space) about the mean
shape and consider variance in the linearized space. The pre-shape
formed by� points lies on a complex hypersphere of unit radius.
The aligned pre-shapes (after generalized Procrustes analysis) of
a dataset of similar shapes would lie close to each other and to
their Procrustes mean on this hypersphere. Thus the tangent hy-
perplane at the mean is a approximate linear space to represent
this dataset and so in this space, standard linear multivariate anal-
ysis techniques can be applied. In this paper, we define a linear
Gauss Markov model on the time series of the tangent coordinates
of the shape in consecutive frames.

The Procrustes tangent coordinates [2] of a pre-shape (�), tak-
ing the Procrustes mean as the pole for the tangent projection, are
given by

���	 �� � �
 � ��
�� 

�

���
�

� ��
�
�� �������� (4)

3. “SHAPE” ACTIVITY MODEL

Any activity in which all the particles are identical (have identi-
cal expected trajectories) will classify as a “static shape activity”.
In our experiments we have looked at the ”activity” of passengers
getting out of a plane and walking towards the terminal where this
assumption is satisfied. Also under the identical particles assump-
tion, the shape formed by� or ��� moving particles does not look
too different. Since Kendall’s shape analysis methods (discussed
above) are for a fixed number of points, we resample the curve
connecting the points to represent it by a fixed number of points�
without deforming the shape appreciably.

The � and � coordinates of each point are represented as a
complex number and thus the positions of� particles form a�-
dimensional complex vector. The complex vectors of shape con-
figurations of particles at a time� are normalized as described in
section 2.1. Generalized Procrustes analysis (discussed in section
2.2) on this sequence of normalized pre-shapes returns a mean
shape for the sequence (using stationarity assumption here). Since
deviations from mean shape are small, the normalized shapes can
be projected into the tangent space (hyperplane) at the mean using
equation (4).

Now, the vector of tangent coordinates is a complex�-dimensional
vector. We string the real and imaginary parts of this vector to ob-
tain a��-dimensional real vector. Now since the pre-shape has
been normalized for translation, it actually lies in a��� � dimen-
sional (real) space. Since the tangent coordinates are obtained by
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projecting the aligned preshapes perpendicular to the (complex)
Procrustes mean shape, the dimensionality of the tangent space is
actually�� � � real dimensions. The rest of the analysis given
below is performed in a�� � � dimensional real space (which is
equivalent to a� � � dimensional complex space).

3.1. Dynamical Model in Tangent Space

Let the vector of tangent coordinates be represented by��. The
origin of the tangent hyperplane is chosen to be the tangent coor-
dinate of the mean and hence the data projected in tangent space
has zero mean by construction. The time correlation between the
tangent coordinates is learnt by fitting a one stepGauss Markov
model, i.e.

����� � �

�� � ����� � ��	 (5)

where�� is a zero mean i.i.d. Gaussian process and�� is indepen-
dent of����.

Since the activity is assumed to be stationary and ergodic, we
can evaluate�� for any time t as

�� � �����
�
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�

�

��

���

���
�
� � (6)

Also a minimum mean square error (MMSE) estimate of A (using
stationarity assumption) can be evaluated as


� � ��	� � ���
� where

��	� � �����
�
���� �

�

� � �

��

���

���
�
���� (7)

Using � � 
� and ergodicity assumption, the noise covariance
matrix can be calculated

�� � ����� ���������� �������
��

�
�

� � �

��

���

��� ���������� �������
�
� (8)

Thus given a training sequence, we can use the above equa-
tions to estimate��, � and��. These parameters can then be
used to test if any subsequence comes from the trained activity or
not.

3.2. Testing

Using the stationary Gauss Markov model described above,

�� � � ��	���	 ��

������� � � ����	���� (9)

Thus any� length sequence (� arbitrary) of tangent projections of
test data would have a jointly normal distribution with pdf

����	 ����	 ����������
�
�
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����� ����������

�
�	 (10)

where (a) follows from the Markovian assumption and (b) follows
from equations (9).

A given test sequence is said to be generated from the normal
activity if the probability of occurrence of its tangent projections
(in the tangent plane generated by the activity mean) using the
above pdf is high. Thus the “distance to activity” metric for an L
frame sequence�� is

���� � �� �� � � !�����	 ����	 ����������

� ����
��
� �� �

������

�����
��� �������

����
� ��� ��������

We test for abnormality at any time� by evaluating�� for the past
� frames i.e. evaluate����� � � !���������	 �������	 ���.

Now, if one looks at the eigenvalues of��, there are 5-6 di-
mensions of “almost” zero variance (eigenvalues much smaller
than the rest). One could choose these directions to represent the
Approximate Null Space (ANS) of the data. If data from the same
activity is projected in these dimensions it will be very close to
the origin with very high probability (follows from Chebyshev’s
inequality [12]) while this will not happen in general for data from
any outside the ‘normal activity class’ [13]. We use this idea
to analyze tangent space data projected along the ANS using the
same activity metric as defined above but applied only to the 6-
dimensional ANS space data. The difference between the values
of the activity metric for normal and abnormal activity is now more
pronounced and computed at a reduced computational cost.

4. EXPERIMENTAL RESULTS

We use a video sequence of passengers getting out of a plane and
walking towards the terminal as an example of a “static shape ac-
tivity” to test our algorithm. We test the performance of the al-
gorithm on simulated spatial and temporal abnormalities. Spatial
abnormality (shown in figure 1(b)) is simulated by making one
particle deviate from its original path and then move back. This
simulates the case of a person deciding to not walk towards the
terminal. Temporal abnormality is simulated by fixing the loca-
tion of a particle thus simulating a stopped person (which can be a
suspicious activity too).

Given a test sequence, at every time instant� we apply the
activity metric to the past� frames with� � �� i.e. ��	��� �
� !�������
	 �����	 ������. Reducing� will detect abnormality
faster but will reduce reliability.

In figure 2(a), the blue solid and dashed lines are the activity
plots for two sequences of normal activity. The solid line is for the
data we trained on and the dashed one is for a new ‘normal’ test se-
quence. In both these cases the metric remains below 200 (chosen
as the ‘normality’ threshold) except between� � ��� to � � ���.
The red circles plot is for the case of a temporal abnormality (one
stopped particle). The particle is stopped at� � �� but it takes a
few frames before the contour starts deforming and some lag be-
cause� � ��. In figure 2(b) we compare the normal activities
with the spatial abnormality. The green stars plot is for the spatial
abnormality (one particle deviating from its expected path). This
is also started at� � �� but gets detected faster because the con-
tour starts deforming almost immediately. Due to lack of space,
we have shown the activity metric plots only for tangent vectors
projected in the 6 dimensional approximate null space (ANS) of
the normal activity.
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(a) (b)

Fig. 1. (a): A ‘normal activity’ frame with 4 people, (b): Contour distorted by spatial abnormality
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Fig. 2. Plots of the activity metric (��	���) for normal and ab-
norm al activities: (a) compares normal activities with temporal
abnormality and (b) shows the plot for spatial abnormality

5. CONCLUSION

In this paper, we have proposed a method for representing activity
in low resolution video data where moving objects are modeled as
point masses. We look at the shape formed by the configuration
of the point objects at a given time instant and model activity by
the mean shape and deformation of the mean shape over time. The
deviations from mean shape are projected into a linearized space
where we represent the dynamics of the activity using a stationary
Gauss-Markov model. Experimental results of this method have
been presented. As part of our future work, we will model the
effect of observation noise and use a sequential Monte Carlo algo-
rithm to solve the partially observed state problem.
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