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ABSTRACT 
 
In this paper, we propose a temporal registration algorithm for 
video sequences.  This algorithm is developed based on a frame-
level model of the temporal misalignment often introduced by 
video processing algorithms, such as compression, frame rate 
conversion or by video capturing.  With this model, the temporal 
registration is formulated as a constrained minimization of a 
matching cost, and it is solved using dynamic programming.  
The proposed temporal registration can also be extended to 
integrate both spatial registration and histogram registration.  In 
addition, prior information about the application can be easily 
incorporated in the form of contextual cost.  Experimental results 
on both synthetic and real processed video sequences with 
temporal misalignments have shown that the proposed algorithm 
is effective and robust to a wide range of noises. 
 

1. INTRODUCTION 
 
For many applications, such as watermark detection [1] and 
reference-based video quality measurement [2], a processed 
video sequence needs to be registered to the original sequence.  
For example, to detect watermarks embedded in pirated videos 
that are shot using camcorder, we may need to register the 
captured video to the original one displayed in the theater.  
Another area where we need video registration is reference-
based video quality measurement.  To ensure quality of service 
(QoS), it is often necessary to measure the quality degradation 
between the original video and the one received by a client.   The 
received video is often a processed version of the original video.  
Therefore, to achieve a meaningful reference-based quality 
measurement, the received video needs to be first registered to 
the original video sequence. 

The misalignment between a processed video and the 
original one is generally a combination of spatial misalignment, 
temporal misalignment and histogram misalignment.  Spatial 
misalignment is the result of spatial manipulation of a video 
sequence, such as warping, cropping and resizing.  The main 
causes of temporal misalignment are the change of temporal 
resolution, such as frame rate conversion (e.q. 3-2 pull down), 
and frame dropping or frame repeat used by video compression 
algorithms (i.e. MPEG-4).  The video capturing process also 
causes temporal misalignment, because the displaying and the 
capturing generally are not synchronized and operate at different 
frame rates.  In addition, processed videos in general have 
different color histograms from the original videos.  This is often 
the result of video processing, such as compression, filtering or 

gamma changes.  It can also be the result of white balance or 
automatic gain control (AGC) in camcorder capture. 

To correct the three types of misalignment, spatial, 
temporal and histogram registration are needed.  Spatial and 
histogram registrations have been studied by many researchers.  
However, few studies have been done on temporal registration.  
Lu [3] proposed a temporal registration for video quality 
measurement.  It can recover global offset between two videos.  
The global offset is estimated by maximizing the normalized 
correlation between a temporal activity signatures extracted from 
each sequence. In [4], Capsi and Irani uses direct search for 
recovering sequence-level temporal misalignment, such as fixed 
shift or fixed frame rate conversion.   

In this paper, we propose a temporal registration 
algorithm for videos.  The proposed algorithm formulates the 
temporal registration as a frame-level constrained minimization 
of a matching cost and solves it using dynamic programming [5].  
It is similar to the algorithm proposed for word segmentation in 
sentences in speech recognition [6].   

This temporal registration algorithm can recover 
temporal misalignment at frame-level instead of at sequence 
level.  Therefore, it can recover a much wider range of temporal 
misalignment, such as frame drop or repeat.  One advantage of 
the proposed framework is that it can be generalized to 
incorporate both spatial and histogram registration.  In addition, 
it not only allows the registration to be performed according to 
the video data, but also allows the integration of prior knowledge 
of what the registration should be in the form of contextual cost.  
Therefore, further improvement of both the accuracy and the 
robustness are possible.  The contextual cost can also be easily 
adjusted according to the application by using domain specific 
contextual information.  
 

2. MODEL FOR TEMPORAL VIDEO PROCESSING 
 
In order to develop an effective temporal registration algorithm, 
we first model the temporal processing aspect incorporated in 
most of the temporally misaligned video sequences.  We denote 
the original video frames (When input video is not progressive, 
use fields instead of frames.) as iI  and processed video frames 

as jJ .  Then, most of the temporal misalignment that need to be 

registered can be modeled using a simple 2-frame integration 
model.  That is,   
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where )( jα  is the matching index that maps a processed video 

frame index to a frame index in the original video, and )(, jj αλ  is 

the weight of )( jIα  in the frame integration. )(, jj αλ  is larger 

than 0 and smaller or equal to 1, and it can be estimated 
efficiently using a closed-form formula given in section 3.1.   

Although the 2-frame integration model is simple, it 
represents many widely used frame-level temporal operations, 
such as frame drop / frame repeat used in video compression (i.e. 
MPEG-4) or frame rate conversion (e.q. 3-2 pull-down).  It is 
also a good model for the video capture process.  Because the 
displaying and the capturing are not synchronized, most captured 
frames are a linear combination of two consecutive displayed 
frames as shown in Figure 1.  In this case, jiλ  is the percentage 

of exposure of iI  during the capture of jJ . 
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Figure 1.  Frame integration during video capturing. 
 

In Figure 2, we show an example of representing a 
processed video using this temporal processing model.  Based on 
the values of )( jα  and )(, jj αλ  in Figure 2, the captured frames 

0 and 1 are the original frames 1 and 3, respectively.  The 
captured frame 2 is a repeat of captured frame 1.  Frame 3 of the 
capture sequence is a frame integration of frames 6 and 7 in the 
original sequence.  Since no captured frames are mapped to 
original frames 0, 2, 4 and 5, they are dropped frames. 
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Figure 2. An example of representing a processed video using 
the proposed temporal processing model. 
 

3. TEMPORAL VIDEO REGISTRATION 
 
With the above model, the temporal registration can be 
formulated as a minimization of the matching cost.  That is, 

given the original and the processed videos, estimate the 
matching indices, )( jα  and the matching parameters )(, jj αλ  

that minimize the distortion between jJ  and the model 

prediction of jJ  from the original video over a window and all 

possible combinations of )(, jj αλ  and )( jα .  However, the 

minimization is subject to a causal constraint on )( jα . That is, 

for any given 1j  and 2j , if 21 jj < , then )()( 21 jj αα ≤ .  The 

causal constraint requires the same temporal ordering among the 
processed video as the original one.  This is enforced by most 
video processing algorithms.  In the case of video capture, it 
means no frames displayed in the past can be captured in the 
future.  In addition, in this paper, we adopt the mean squared 
error (MSE) as the distortion measure.  Therefore, the 

registration parameters [ ])(),( ** jj αλ  are computed as 
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where M is the number of captured frames, and )( jλ  is 

)(, jj αλ . Since )( jλ  for Mj ,,0 �=  can be optimized 

independently of each other, and there is only causal dependency 
among )( jα , the optimization defined in (2) can be solved 

using dynamic programming [5]. 
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Figure 3. Temporal registration using dynamic programming.  
Circles are captured frames.  Squares are original frames.  A 
feasible path is marked by a solid line.  All feasible paths from 
the point marked by the hexagon are shown using dash lines. 
 
To solve (2) using dynamic programming, we first partition the 
minimization into stages according to the index of the processed 
frame, j .  The state for each stage is the original frame index, 
denoted as i .  As shown in Figure 3, in a grid defined by stages 
and states, )( jα defines a mapping from stages to states.  We 
call this mapping a path from one stage to another.  Therefore, 
the solution of (2) is a path from stage 0  to stage M that has the 
minimal accumulated mean squared error.  

However, because of the causal constraint, 
)()1()0( Mααα ≤≤≤ � , the solution to (2) can only be a 
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feasible path, i.e. paths that are monotonically non-decreasing in 
value.  In Figure 3, we show a feasible path from stage 0 to stage 
M using a solid line.  We also show all feasible paths that pass a 
grid point marked by the hexagon using dash lines.  Therefore, 
the solution to (2) is a monotonically non-decreasing path from 
stage 0 to stage M that has the minimal accumulated mean 
squared error (MSE).  
 Denote the accumulated MSE over a feasible path 
from stage 0 to stage M as )(Mδ .  Then, 
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Therefore, the dynamic programming contains the following 
three steps: 
(1) Local minimization at each node ),( ij .  

( ) [ ] 2
1
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(2) Recursively, as shown in Eq. (3), compute ( )jδ , for 

Mj ,...,1,0= . 

(3) After ( )Mδ , the minimal accumulated MSE for the last 
stage is calculated, back trace to get 

[ ])(),(,),0(),0( **** MM αλαλ � . 

       
3.1 Minimization of Local Prediction Error 
 
As shown in the first step of the above dynamic programming 
algorithm, we need to minimize the local prediction error 
defined in Eq (4).  Substituting Eq (1) into Eq (4), we have 
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for any given captured frame jJ  and original frames iI  and 

1−iI . Let ),( GFε  be the mean squared error between two 

images, F  and G , of size NM × . 
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For three images, F , H  and G , we define ),;( GHFς  as the 

"cross correlation" between the differences )( ,, nmnm GF −  and 

)( ,, nmnm HF − .  That is, 
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Then, the jiλ  minimizes Eq (5), *
jiλ , is 
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3.2 Contextual Constraints 
 
Video registration is an ill-posed inverse problem.  For a given 
original video and a processed video, there may exist more than 
one solution.  However, due to the nature of the prior knowledge 
of the application, the solutions to the same problem may have 
significantly different probabilities.  For example, frame repeat 
or frame drop is usually used infrequently, and they are seldom 
repeated more than once.  When there are a large number of 
similar frames, they are more likely from a scene of little motion 
than caused by consecutive uses of frame repeat.  Therefore, 
contextual constraints, the prior knowledge of what a solution 
must satisfy, can be used of to reduce the solution space, 
improve the accuracy and increase the robustness against noises.  
Using contextual constraints in the form of cost functions, 

( ))(),(,),0(),0( MMC αλαλ � , the optimization problem in (2) 
can be extended to  
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Figure 4.  Plot of contextual cost , ( )1),1(;),( −− jj jjC αλαλ . 

 
One contextual constraint already used is the causal 

constraints on matching indices.  The causal constraint enforces 
the non-decreasing temporal ordering in the matching indices.  
However, not all monotonically non-decreasing paths among the 
state space are feasible.  For example, when a change of frame 
occurs during the capture, 10 << λ , if 1+= jj αα , then either 

1+= jj λλ  (frame repeat), or 10 1 =<< +jj λλ .  That is, if two 

consecutive captured frames correspond to the same set of 
original frames, then except for frame repeat, the integration of 
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the original frames can only happen during the capture of the 
first frame.  Other results, such as 10 1 <<< +jj λλ  or 

1+> jj λλ  are invalid. One contextual cost function is shown in 

Figure 4.  It enforces the following contextual constraints: 
(1) ( )1),1(;),( −− jj jjC αλαλ  is set to maximal distortion 

when 1−< jj αα , to enforces the causal constraint. 

(2) ( )1),1(;),( −− jj jjC αλαλ  is 0 when 11 += −jj αα .  This 

encourages smooth transition among static scenes. 
(3)  We also assign positive cost to ( )1),1(;),( −− jj jjC αλαλ  

when 1−= jj αα .  This penalizes the decision of frame 

repeat.  Therefore, a decision of frame repeat will be made 
only if it reduces the matching error significantly. 

 
4. GENERALIZATION OF TEPORAL REGISTRATION 

 
Our temporal video registration algorithm can be extended to 
include spatial and histogram registrations.  This is done by 
incorporating them in the minimization of local prediction 
errors.  We plan to present the spatial, temporal and histogram 
registration in another paper. 
 

5. EXPERIMENTAL RESULTS 
 
We have conducted the following experiment to test the 
performance and the robustness of our temporal registration 
algorithm.  The videos that we use are standard definition movie 
clips with many scene changes.  For these videos, we first distort 
them temporally.  We randomly choose 20% of the frames to 
drop, 5% to repeat twice and 5% to repeat three times.  40% of 
frames are copied from the original to the processed sequences.  
For the last 30% of frames, we simulate frame integration using 
randomly generated λ 's and linear combination of two 
consecutive frames to generate processed frames.  We denote the 
temporally distorted sequences as "TempDist". Then, we further 
distorted the temporally distorted sequences as follows:  (1) 
Gaussian low-pass filtering with standard deviation 1 and 3.  The 
resulting videos are "Gblur1" and "Gblur3", respectively.  
"Gblur3" uses a 19x19 tap filters, and it introduces severe blur 
to a video.  (2) Resizing: subsampling without anti-aliasing 
filtering, then interpolating back to the original resolution using 
bi-linear interpolation.  We performed two resizing operations: 
2x2 and 4x4 subsampling and interpolation.  The resulting 
sequences are "Resize2" and "Resize4", respectively.  Resizing 
not only introduces blurring, but also causes aliasing.  "Resize4" 
also degrades the video quality significantly, similar to "Gblur3".  
(3) MPEG-4 compression at 2Mbps (Mega bits per second) and 
1 Mbps. The results are "MP4-2M" and "MP4-1M".  (4) Additive 
Gaussian noise with amplitude 5, denoted as "Noise5".  

We registered all 8 types of processed videos to the 
original sequences.  The results are shown in Table 1.  Since the 
real values are known, we first computed the MAD (Mean 
Absolute Difference) of the estimate of jiλ  and listed them in 

the 3rd column in Table 1.  The 4th column is the error rate (ER) 
of the estimate of )( jα .  If the estimated )( jα  is not the same 

as the real )( jα , we count it as one error.  ER is the percentage 

of errors among all frames.  There are only a few errors when the 
temporally distorted sequences are further distorted significantly, 

and all errors occurred in "Blur3" and "Noise5" have a difference 
of 1 between the real and the estimated )( jα . 

In addition, we show the effectiveness of our temporal 
registration using the RMSE (Root Mean Squared Error).  The 
5th column in Table 1 is the RMSE between the original and the 
processed sequences, the RMSE Before Registration.  They are 
large because the temporal distortion causes misalignment 
among frames.  The 6th column is the RMSE between the 
processed and the sequences that are only temporally distorted.  
This column shows the amount of additional distortion added to 
the temporal distortion.  Since temporal registration can not 
compensate for these additional distortion.  The RMSE in this 
column is the Lower Bound for the registration error.  The last 
column is the RMSE between the processed videos and videos 
warped from the original videos using the results of the temporal 
registration, the RMSE After Registration.  They are much 
smaller than the error between the original and the distorted 
sequences listed under "Before Reg" and very close to their 
"Lower Bounds" shown in the 6th column.  

In conclusion, we propose a temporal registration 
algorithm for processed video sequences.  Experimental results 
show that the proposed temporal registration algorithm is not 
only accurate, but also robust against various distortions caused 
by filtering, compression or additive noise.  
 
Table 1.  Experimental results discussed in section 6.  

RMSE  Distorted 
Sequences 

MAD 

jiλ  
ER 
% Before 

Reg 
Lower 
Bound 

After 
Reg 

1 TempDist 0.00 0 49.9 0.00 0.70 
2 Blur1 0.04 0 49.8 2.39 5.34 
3 Blur3 0.11 1.7 49.5 6.05 13.23 
4 Resize2 0.03 0 49.8 2.49 5.86 
5 Resize4 0.06 0 49.7 5.02 11.11 
6 Noise5  0.03 0.8 51.5 10.87 24.38 
7 MP4-2M 0.03 0 49.8 2.48 5.50 
8 MP4-1M 0.05 0 49.7 3.28 7.22 
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