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ABSTRACT

In this paper, we propose a temporal registration agorithm for
video sequences. This algorithm is developed based on a frame-
level model of the temporal misalignment often introduced by
video processing agorithms, such as compression, frame rate
conversion or by video capturing. With this model, the temporal
registration is formulated as a constrained minimization of a
matching cost, and it is solved using dynamic programming.
The proposed tempora registration can aso be extended to
integrate both spatial registration and histogram registration. In
addition, prior information about the application can be easily
incorporated in the form of contextual cost. Experimental results
on both synthetic and real processed video sequences with
tempora misalignments have shown that the proposed algorithm
is effective and robust to awide range of noises.

1. INTRODUCTION

For many applications, such as watermark detection [1] and
reference-based video quality measurement [2], a processed
video sequence needs to be registered to the origina sequence.
For example, to detect watermarks embedded in pirated videos
that are shot using camcorder, we may need to register the
captured video to the origina one displayed in the theater.
Another area where we need video registration is reference-
based video quality measurement. To ensure quality of service
(Qo09), it is often necessary to measure the quality degradation
between the original video and the onereceived by aclient. The
received video is often a processed version of the original video.
Therefore, to achieve a meaningful reference-based quality
measurement, the received video needs to be first registered to
the original video sequence.

The misalignment between a processed video and the
origina one is generally a combination of spatial misalignment,
temporal misalignment and histogram misalignment.  Spatial
misalignment is the result of spatial manipulation of a video
sequence, such as warping, cropping and resizing. The main
causes of temporal misalignment are the change of temporal
resolution, such as frame rate conversion (e.g. 3-2 pull down),
and frame dropping or frame repeat used by video compression
algorithms (i.e. MPEG-4). The video capturing process also
causes temporal misalignment, because the displaying and the
capturing generally are not synchronized and operate at different
frame rates. In addition, processed videos in general have
different color histograms from the original videos. Thisis often
the result of video processing, such as compression, filtering or

gamma changes. It can also be the result of white balance or
automatic gain control (AGC) in camcorder capture.

To correct the three types of misalignment, spatial,
temporal and histogram registration are needed. Spatia and
histogram registrations have been studied by many researchers.
However, few studies have been done on temporal registration.
Lu [3] proposed a tempora registration for video quality
measurement. It can recover global offset between two videos.
The global offset is estimated by maximizing the normalized
correlation between a temporal activity signatures extracted from
each sequence. In [4], Capsi and Irani uses direct search for
recovering sequence-level temporal misalignment, such as fixed
shift or fixed frame rate conversion.

In this paper, we propose a tempora registration
algorithm for videos. The proposed agorithm formulates the
tempora registration as a frame-level constrained minimization
of amatching cost and solves it using dynamic programming [5].
It is similar to the algorithm proposed for word segmentation in
sentences in speech recognition [6].

This tempora registration agorithm can recover
temporal misalignment at frame-level instead of at sequence
level. Therefore, it can recover a much wider range of temporal
misalignment, such as frame drop or repeat. One advantage of
the proposed framework is that it can be generalized to
incorporate both spatial and histogram registration. In addition,
it not only allows the registration to be performed according to
the video data, but also allows the integration of prior knowledge
of what the registration should be in the form of contextual cost.
Therefore, further improvement of both the accuracy and the
robustness are possible. The contextual cost can aso be easily
adjusted according to the application by using domain specific
contextual information.

2. MODEL FOR TEMPORAL VIDEO PROCESSING

In order to develop an effective temporal registration agorithm,
we first model the tempora processing aspect incorporated in
most of the temporally misaligned video sequences. We denote
the original video frames (When input video is not progressive,
use fields instead of frames.) as |; and processed video frames

as J;. Then, most of the temporal misalignment that need to be

registered can be modeled using a simple 2-frame integration
model. Thatis,
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where a(j) isthe matching index that maps a processed video
frame index to aframe index in the original video, and Aj,a(j) is

the weight of 1,j) in the frame integration. A; () is larger

than 0 and smaller or equa to 1, and it can be estimated
efficiently using a closed-form formula given in section 3.1.
Although the 2-frame integration model is simple, it
represents many widely used frame-level temporal operations,
such as frame drop / frame repeat used in video compression (i.e.
MPEG-4) or frame rate conversion (e.q. 3-2 pull-down). It is
also a good model for the video capture process. Because the
displaying and the capturing are not synchronized, most captured
frames are a linear combination of two consecutive displayed
frames as shown in Figure 1. Inthiscase, Aj; is the percentage

of exposure of |; during the captureof J; .
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Figure 1. Frameintegration during video capturing.

In Figure 2, we show an example of representing a
processed video using this temporal processing model. Based on
the valuesof a(j) and Aj4(;y in Figure 2, the captured frames

0 and 1 are the origina frames 1 and 3, respectively. The
captured frame 2 is a repeat of captured frame 1. Frame 3 of the
capture sequence is a frame integration of frames 6 and 7 in the
origina sequence. Since no captured frames are mapped to
origina frames 0, 2, 4 and 5, they are dropped frames.
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Figure 2. An example of representing a processed video using
the proposed temporal processing model.

3. TEMPORAL VIDEO REGISTRATION

With the above model, the temporal registration can be
formulated as a minimization of the matching cost. That is,

given the origind and the processed videos, estimate the
matching indices, a(j) and the matching parameters Ajq(j)
that minimize the distortion between J; and the model
prediction of Jj from the original video over a window and all
possible combinations of Aj,¢j) and a(j). However, the
minimization is subject to a causal constraint on a( j) . That is,
for any given j; and j,,if j; < j,,then a(j;)<a(j,). The
causal constraint requires the same temporal ordering among the
processed video as the original one. This is enforced by most
video processing algorithms. In the case of video capture, it
means no frames displayed in the past can be captured in the

future. In addition, in this paper, we adopt the mean squared
error (MSE) as the distortion measure.  Therefore, the

registration parameters I_A* (p).a’ (j)J are computed as
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where M is the number of ceptured frames, and A(j) is
Aoy Since A(j) for j=0,---,M
independently of eat ather, and there isonly causal dependency
among a(j), the optimization cefined in (2) can be solved
using dynamic programming [5].
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Figure 3. Tempord registration wsing dynamic programming.
Circles are catured frames. Squares are original frames. A
feasible path is marked by a solid line. All feaible paths from
the point marked by the hexagon are shown using dash lines.

To solve (2) using dynamic programming, we first partition the
minimization into stages acording to the index of the processed
frame, j. The state for ead stage is the origina frame index,
denoted as i . As shown in Figure 3, in agrid defined by stages
and states, a(j) defines a mapping from stages to states. We
cdl this mapping a path from one stage to ancther. Therefore,
the solution o (2) is a path from stage O to stage M that has the
minimal acaimulated mean squared error.

However, becaise of the casd constrant,
a(0)<a(@) <---<a(M), the solution to (2) can orly be a
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feasible path, i.e. paths that are monotonically non-decreasing in
value. In Figure 3, we show afeasible path from stage O to stage
M using a solid line. We also show all feasible paths that pass a
grid point marked by the hexagon using dash lines. Therefore,
the solution to (2) is a monotonically non-decreasing path from
stage 0 to stage M that has the minimal accumulated mean
squared error (M SE).

Denote the accumulated MSE over a feasible path
from stage O to stageM as 6 (M) . Then,
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Therefore, the dynamic programming contains the following
three steps:
(1) Local minimization at each node (j,i).
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(2) Recursively, as shown in Eg. (3), compute 6(]), for
i=0L1...M .
(3) After 5(M), the minimal accumulated MSE for the last
stage is  caculated, back trace  to get
[A*(0),a*(0),---,A*(M),a*(|v|)].

3.1 Minimization of Local Prediction Error

As shown in the first step of the above dynamic programming
algorithm, we need to minimize the local prediction error
defined in Eq (4). Substituting Eq (1) into Eq (4), we have
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for any given captured frame J; and origina frames I; and
li—1. Let &(F,G) be the mean squared error between two
images, F and G, of size M xN .
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For threeimages, F, H and G, we define ¢(F;H,G) asthe
"cross correlation” between the differences (Fy,, ~Gp,,) and
(Fmn —Hmp) - Thatis,
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3.2 Contextual Constraints

Video registration is an ill-posed inverse problem. For a given
original video and a processed video, there may exist more than
one solution. However, due to the nature of the prior knowledge
of the application, the solutions to the same problem may have

min §§(M -1+ min||JM _¢[|G(M)_1’|G(M);)‘(M)] "2 ﬁg‘gnificantly different probabilities. For example, frame repeat
A(M)

or frame drop is usualy used infrequently, and they are seldom
repeated more than once. When there are a large number of
similar frames, they are more likely from a scene of little motion
than caused by consecutive uses of frame repeat. Therefore,
contextual constraints, the prior knowledge of what a solution
must satisfy, can be used of to reduce the solution space,
improve the accuracy and increase the robustness against noises.
Using contextual congtraints in the form of cost functions,
c(r(0),a(0),--,A(M),a(M)), the optimization problem in (2)
can be extended to
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Figure4. Plot of contextual cost, CA(j).a;;A(j -1).aj).

One contextual constraint aready used is the causal
constraints on matching indices. The causal constraint enforces
the non-decreasing tempora ordering in the matching indices.
However, not all monotonically non-decreasing paths among the
state space are feasible. For example, when a change of frame
occurs during the capture, 0< A <1, if aj =04, then either

Aj =Ajsq (framerepeat), or 0<A; <Ajy =1. Thatis, if two

consecutive captured frames correspond to the same set of
origina frames, then except for frame repeat, the integration of
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the origina frames can orly happen duing the cature of the
first frame. Other results, such as 0<A]- </\J-+1 <1 or

Aj > A4 areinvaid. One ontextual cost functionis siown in

Figure 4. It enforces the foll owing contextual constraints:
@) clrG).aj;A(j-D.aj-) is =t to maximad disortion

when a; <a;-;, to enforcesthe causal constraint.
@ clAG).aj;A(j-D.aj-1) isOwhen aj =aj_y+1. This

encourages snocth transition among static scenes.
(3) We dso asdgn pasitive st to C(A(j),a]-;)\(j —1),aj_l)

when o =aj4. This pendizes the dedsion d frame

reped. Therefore, a dedsion d frame repea will be made
only if it reduces the matching error significantly.

4. GENERALIZATION OF TEPORAL REGISTRATION

Our temporal video registration algorithm can be extended to
include spatial and histogram registrations. This is dore by
incorporating them in the minimizaion o locd prediction
errors. We plan to present the spatial, temporal and Hstogram
registration in ancther paper.

5. EXPERIMENTAL RESULTS

We have onduwted the following experiment to test the
performance and the robustness of our tempora registration
algorithm. The videos that we use ae standard definition movie
clips with many scene changes. For these videos, we first distort
them tempordly. We randamly chocse 20% of the frames to
drop, 5% to reped twice and 3% to reped threetimes. 40% of
frames are @pied from the original to the processed sequences.
For the last 30% of frames, we simulate frame integration wsing
randamly generated A's and linea combination o two
conseautive frames to generate processed frames. We dencte the
temporally distorted sequences as "TempDist". Then, we further
distorted the temporaly distorted sequences as follows. (1)
Gaussan low-passfiltering with standard deviation 1and 3 The
resulting videos are "Gblurl" and "Gblur3", respedively.
"Gblur3" uses a 19x19 tap filters, and it introduces svere blur
to a video. (2) Resizing: subsampling withou anti-aliasing
filtering, then interpolating badk to the original resolution wing
bi-linea interpolation. We performed two resizing operations:
2x2 and 4x4 subsampling and interpolation. The resulting
sequences are "Resize2" and "Resize4", respedively. Resizing
not only introduces blurring, but also causes aliasing. "Resize4"
also degrades the video quality significantly, similar to "Gblur3".
(3) MPEG-4 compresson at 2Mbps (Mega hits per second) and
1 Mbps. Theresults are "MP4-2M" and "MP4-1M". (4) Additive
Gaussan nase with amplitude 5, denoted as "Noise5".

We registered all 8 types of processed videos to the
origina sequences. The results are shown in Table 1. Sincethe
red vaues are known, we first computed the MAD (Mean
Absolute Difference) of the estimate of A; and listed them in

the 3" column in Table 1. The 4™ column is the eror rate (ER)
of the estimate of a(j) . If the etimated a(j) isnot the same

asthered a(j),we ourt it asone aror. ER isthe percentage

of errorsamong all frames. There ae only afew errors when the
temporally distorted sequences are further distorted significantly,

and al errorsoccurred in "Blur3" and "Noise5" have adifference
of 1 between thered and the estimated o ( j) .

In addition, we show the dfedivenessof our temporal
registration wsing the RMSE (Root Mean Squared Error). The
5" column in Table 1 is the RMSE between the original and the
processed sequences, the RMSE Before Registration. They are
large becaise the temporal distortion causes misalignment
among frames. The 6 column is the RMSE between the
processed and the sequences that are only temporally distorted.
This column shows the anount of additional distortion added to
the tempora distortion. Since tempora registration can nd
compensate for these alditional distortion. The RMSE in this
column is the Lower Bound for the registration error. The last
column is the RMSE between the processed videos and videos
warped from the original videos using the results of the temporal
registration, the RMSE After Registration. They are much
smaller than the eror between the origina and the distorted
sequences listed undxr "Before Reg' and very close to their
"Lower Bounds' shown in the 6 column.

In conclusion, we propcse a tempora registration
algorithm for processed video sequences. Experimental results
show that the proposed tempord registration agorithm is not
only acairate, but also robust against various distortions caused
by filtering, compresgon a additive noise.

Table 1. Experimental results discussd in sedion 6

Distorted MAD | ER RMSE

Sequences | Aj; % | Before | Lower | After
Reg Bound | Reg

TempDist 0.00 0 49.9 0.00 0.70

Blurl 0.04 0 49.8 2.39 534

Blur3 011 | 17 495 6.05 1323

Resize? 0.03 0 49.8 249 5.86

Resized 0.06 0 49.7 5.02 1111

Noise5 0.03 | 0.8 515 1087 | 2438

MP4-2M 0.03 0 49.8 248 5.50

XN || (WIN|F-

MP4-1M 0.05 0 49.7 3.28 7.22
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