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ABSTRACT

Wavelet-domain hidden Markov tree (HMT) modeling
provides a powerful approach to capture the underlying
statistics of the wavelet coefficients. We develop a mutual
information-based  information-theoretic  approach to
guantify the interactions between the wavelet coefficients
within a wavelet tree. This graphical method enables the
design of a context-specific hidden Markov tree (HMT) by
adding or deleting links from the traditional tree structure.
The performance of the model is demonstrated on
segmenting two-dimensional  synthetic textures having
intricate substructures, although the method can be used for
signals of arbitrary dimensions.

1. INTRODUCTION

A multi-level wavelet decomposition splits the original
signal spectrum into a set of frequency subbands. Crouse et
a. [1] have modeled each wavelet node as a two-state
Gaussian mixture, and the states sampled by a sequence of
wavelet coefficients (connected across the scales forming a
wavelet tree) are modeled as a Markov process. This
results in a hidden Markov tree (HMT) model, since the
state being sampled by a given wavelet coefficient is
assumed unknown, or “hidden”. The HMT structure [1]
connects each (parent) node in scale j with 2" (children)
nodes at the next finer scale j+1, M being the
dimensionality of the signal space. This approach ignores
the scaling coefficients at the coarsest level from any
parametric statistical modeling. Moreover, the links
between the wavelet coefficients are treated as fixed rather
than being adaptive to the statistics of the signal under
consideration.

Recently, there has been increasing interest in a more
general class of probabilistic models of which the HMT is a
special case. The approach, known as graphical models [2],
tries to “learn” the complex dependencies directly from
data rather than making a-priori assumptions on
interactions between the hidden and the observed variables.
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In our approach, we explore possible existence of
interactions between the wavelet coefficients not directly
connected by the traditional HMT structure. The
importance of including additional links beyond those in
[1] is quantified in terms of the mutual information. The
links between the non-adjacent wavelet node pairs are then
added to the modified HMT structure and the Expectation-
Maximization (EM) algorithm is modified to include the
changes in the structure. This approach allows us to design
a wavelet tree structure in an adaptive signal-dependent
fashion that tries to emulate the “true” underlying
dependencies between wavelet coefficients.

In the multi-dimensional case, the discrete wavelet
transform decomposes the original signal into a set of
oriented frequency bands. For example, a two-dimensional
image under discrete wavelet transform decomposes into
four subbands: HH, HL, LH and LL, where LL represents
the coarsest representation of the original image. In our
approach, we include the coarsest LL subband as the
common root node to the HH, HL and LH trees and modify
each subband tree structure through addition of potentially
significant links as dictated by mutual-information
calculations. Each modified subband tree was trained
separately via a modified EM algorithm.

The remainder of the text is organized as follows. In
Sec. 2, we discuss the adaptations of the traditional HMT
scheme. Although our proposed strategy is independent of
the dimensionality of the signal space, we have chosen to
use two-dimensional signals (digital “Brodatz” images [3])
to illustrate the efficacy of our algorithm. The performance
of the proposed graphical model in segmenting two-
dimensional textures is compared in Sec 3 against the
traditional HMT quadtree structure. The work is
summarized and conclusions are discussed in Sec. 4.

2. SIGNAL-SPECIFIC TREE DESIGN
A. Wavelet Decomposition and HM T model

The main drawback of the HMT-based stochastic multi-
scale modeling for multi-dimensional (M >1) signals is
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the fixed tree structure for all the subbands, independent of
the signal under investigation. The HMT modeling also
ignores the coarsest LL band from parametric optimization
viathe EM algorithm. However, it has been shown [4] that
the wavelet coefficients of most “natural” images possess
certain dependencies across scales and even the coarsest LL
subband contains significant information about the original
two-dimensional signal.

In our modification of the HMT scheme, we place the
scaling coefficient from the coarsest LL subband as the root
node to each of the three subband wavelet trees. The solid
lines in Fig. 1 represent the default interconnections present
in the HMT for a two-level wavelet tree coupled with a
root scaling node, whereas the dotted lines represent the
potential additional links considered here. Our objective is
to quantify the “importance” of all the potential dashed
links in Fig. 1. We add to the traditional HMT structure
those links having importance higher than a predefined
threshold. The EM algorithm [1] is modified appropriately
for the adapted HMT structure.

A two-dimensional image, subjected to wavelet
decomposition, produces four decomposed signal subbands
HH®Y HLY, LH* and LL* (superscript represents the level of
decomposition). The HH' subband corresponds to the
original signal highpass filtered in both dimensions. The
filtering process is repeated sequentially, with LL* HH¥
LH* and HL* representing the filtered and downsampled
output from LL*% Assume that we perform K levels of
wavelet decomposition. Each point in HH® corresponds to
four (2x2) points in the HH*and (2*x2"") points at the
finest resolution HH* signal. Suppose Gi; corresponds to the
LL subband coefficient at position (i,j). In our structure Ci;
will be connected to the root wavelet nodes of the three
subbands HH, HL and LH at the same spatial location (i,j).

At this point, the three subbands (HH, HL and LH) that
resulted from a two-dimensional wavelet decomposition are
connected via a common root node provided by the
coarsest LL band. We implement a signal-specific tree
modification for each of these three subbands. Given a
traditional HMT quadtree structure [1], we quantify the
interaction between the non-neighboring wavelet nodes
based on mutual information. We “add” direct links
between the tree nodes that possess mutual information
higher than a predefined threshold. It is to be noted that the
choice of threshold is critical to adaptive tree modification.
A high threshold leads no modification of the original
HMT structure, whereas a very low threshold leads to a
complicated HMT structure, yielding potential overfitting.

B. Mutual
guantification

Information-based Link importance

The Mutual Information (MI) quantifies the reduction of
uncertainty in one variable due to the knowledge about the
other. Suppose x and y are two random variables
represented by probability distribution p(x) and p(y)
respectively. The mutual information, I(x,y) between the
two variables x and y is defined as

ey = H OO - H i} Vlog, PXY) (1)
(xy) = H(X) - H(x]y) ;yp(xy) %92 500 p(y)

Where p(x,y) represents the joint probability distribution of
xandy.

In order to explore the potential of additional links
beyond those in the traditional HMT [1], we first train the
EM algorithm [1] on the traditional HMT (excluding the
LL root node). This results in a Gaussian mixture model
(GMM) for each of the five wavelet nodes (nodes 2-6 in
Fig. 1). The root scaling node is assumed to be realized
from a single underlying Gaussian source with its
parameters  directly estimated from the coarsest
representation of the training samples. As explained above,
one needs to quantify the individual marginal and the joint
probability distribution of two random variables x and y in
order to quantify the mutual information between them.
The marginal distribution of the random variables
corresponding to each node in the HMT is represented by
Gaussian source(s) with trained parameters (means and
variances are trained using the traditional EM algorithm,
except for the root scaling node which is trained
empirically using a best-fit Gaussian distribution). The joint
probability distribution between any two nodes within a
tree is estimated using a two-dimensional Gaussian
distribution having a full covariance matrix. The
covariance matrix is estimated empirically from the training
samples of the image. Given the parametric representation
of the marginal and joint probability distributions, we
calculate the mutual information between a node pair (x,y)
using equation (1).

Given a tree structure with six nodes (Fig. 1), one
could possibly have 15 (GCZ) links between the node pairs,

of which, the traditional HMT imposes four links (shown as
solid lines in Fig. 1). Hence, for a two-level wavelet
decomposition of an image, we focus on quantifying the
significance of the remaining eleven possible links. It
should be noted that the same procedure is applied for all
three subbands individually. The traditional HMT structure
is appended with the links that correspond to mutual
information higher than the threshold value (Fig. 2).

The details of the traditional EM algorithm are
presented in [1]. Hence, we shall only illustrate the
modifications needed for the adapted tree structure. As
discussed in [1], each link between a wavelet coefficient
pair (indexed by i and its parent p(i)) is represented by a
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2x2 transition matrix (Em(i) where m and n represent the

states of the wavelet nodes i and p(i) respectively,
m,n 0{0,1} ). In our approach, since the root node

corresponds to a single Gaussian density, any link
connecting the root node with one of its children is
represented by a 2x1 matrix. As shown in Fig. 2, each leaf
node (nodes 3-6) in each of the three subbands (HH, HL
and LH) is connected to the top root node (node 1) directly
and via node 2. As explained in [1], the EM algorithm for
the hidden Markov tree structure revolves around
estimating the intermediate model parameters (for example,

a, and ) defined as
a,=p(s=mry [f)and 5 = (1, |s =mO)) (2

Since the root node is modeled as a single Gaussian
distribution, the corresponding a parameter, a, = p(s;=1)
is fixed a one. In the modified HMT structure, each leaf
node has two parents. While calculating the parameter
a for each one of the leaf nodes, one may choose either of
the two links from the parent-pair. The iterative upward-
downward optimization of a’s and g’s result in

parametric optimization of the modified tree structure. For
) 6 2 0O
the root scaling node, g :ﬁ‘zl Z,B,(m)fgflgg(&%af)
=2 m=

(tyand o, are best-fit Gaussian parameter approximation
of the root node having five children, refer Fig. 2) signifies
that the likelihood of the modified tree (=a,0) [1]

depends jointly on the scaling node parameters and its
interaction with the wavelet nodes (nodes 2-6 in Fig. 2).

3. TEXTURE SEGMENTATION PERFORMANCE

We illustrate the efficacy of the proposed signal-specific
hidden Markov tree design based on its performance on
segmenting different textures. We have employed the Haar
wavelet [5] although one might use any problem-specific
wavelet. The proposed algorithm modifies the tree structure
within each subband by adding the potential links beyond
those in [1]. Although one might investigate the combined
HMT structure and try to obtain the interactions between
any two nodes (not necessarily in the same subband), we
have only focused on intra-subband interactions in our
modified tree structures since no significant performance
gain was observed from inter-subband wavelet links. In
other words, the potential of additional links was examined
separately for the HH, HL and LH coefficients, with no
links between these bands. Mutual-information calculations
indicate that there exist minimal inter-subband
dependencies between the wavelet coefficients for the
synthetic textures presented here. The performance of the
proposed algorithm is compared against the traditional

HMT approach [1]. The comparison of the two algorithms
yields insight into the benefit of including the statistics
from the LL subband and the utility of modifying the HMT
structure based on the signal statistics.

We have considered synthetic textures [3] for which
“truth” is known. Consider a two-texture image (Fig. 4a)
generated from two textures of the image database [3].
Each training sample is an image block of size 4x4 pixels.
The training samples were subjected to a two-level wavelet
decomposition.

Given a set of N=500 training trees for each of the
three subbands (HH, HL and LH), we modify the HMT
structure (Fig. 2) by adding links based on mutual
information. Fig. 3 represents the distribution of the mutual
information for different node pairs within the wavelet tree.
The figure shows a strong correlation between the root
scaling node with the wavelet nodes across the scales
whereas mutual information between the wavelet nodes
within the same scale are relatively week. As pointed
earlier, we have also examined inter-subband wavelet
interactions (e.g. between HH and HL coefficients) and
found them to be very weak compared to intra-subabnd
interactions.

The “ground truth” for the texture mixture is shown in
Fig. 4(b) where black and white represent two component
textures. Fig. 4(c) corresponds to segmentation
performance of the traditional HMT whereas the
performance of the proposed algorithm is shown in Fig.
4(d). The proposed algorithm produces better segmentation
performance (91% vis-a-vis 85%) when compared against
thetraditional HMT structure.

Most “natural” images possess strong spatial
correlation. In [6], a spatial HMM was used to capture the
interactions between the eight adjacent image blocks. We
have shown here (Fig. 6) that a simple averaging of the log
likelihoods of nine surrounding blocks (including the
central block) based on our model achieves comparable
performance in texture segmentation vis-a-vis HMT-HMM
[6] scheme (Fig. 5). We infer that since the proposed
algorithm relaxes the stringent assumptions imposed by the
wavelet-domain  HMT modeling, we observe superior
segmentation performance as compared to the combined
HMT-HMM scheme. Our model uses significantly less
number of parameters since the entire set of spatial HMM
parameters are absent.

4. CONCLUSIONS
We have proposed a new graphical multi-scale stochastic

modeling scheme for wavelet coefficients in a multi-
dimensional signal space. The new algorithm allows the
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HMT structure to adaptively add links between the wavelet
coefficients within and across the scales. The proposed
scheme also models the coarsest scaling coefficients in
conjunction with the wavelet coefficients. The algorithm is
shown to produce better segmentation and classification for
two-dimensional “Brodatz” images.

The primary disadvantage of the new algorithm is that
the adaptive structure might become complicated when
three or more levels of wavelet decomposition is performed
on the original data due to a large set of potential additional
links. However, we expect the efficiency and flexibility of
the approach to model all potentially important intra- and
inter-subband interactions to outweigh the potential
limitations.
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Fig. 1: two-level HMT structure with “direct” and potential links”
Fig. 2: Modified HMT structure based on mutual information
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Fig. 3: Distribution of Mutual Information between node pairs

b R AR e K "
50 100 150 200 250 300 350 400 450 500

4(a)
s0 50

100 100

150 150

200 200

250 260

300 300

350 350

400 400

as0 450

s00 S00 Tl it 9" . dit

100 200 300 400 2S00 100 200 2S00 400 S00

4(b) 4(d)

Fig. 4a: Mixture of two textures used for segmentation.

Fig. 4b: “True” labels corresponding to texture mixture.

Fig. 4c: 85% correct classification using traditional HMT.

Fig. 4d: 91% correct classification using modified HMT structure
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Fig. 5a: 96% correct classification using HMT-HMM scheme
Fig. 5b: 99% correct classification using simple averaging of nine
surrounding blocks of modified HMT outputs.
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