
CONTEXT-BASED GRAPHICAL MODELING FOR  
WAVELET DOMAIN SIGNAL PROCESSING  

 
Nilanjan Dasgupta and Lawrence Carin 

 

Department of Electrical and Computer Engineering 
Duke University, Durham, NC 27708-0291 

 
ABSTRACT 

 
Wavelet-domain hidden Markov tree (HMT) modeling 
provides a powerful approach to capture the underlying 
statistics of the wavelet coefficients. We develop a mutual 
information-based information-theoretic approach to 
quantify the interactions between the wavelet coefficients 
within a wavelet tree. This graphical method enables the 
design of a context-specific hidden Markov tree (HMT) by 
adding or deleting links from the traditional tree structure. 
The performance of the model is demonstrated on 
segmenting two-dimensional synthetic textures having 
intricate substructures, although the method can be used for 
signals of arbitrary dimensions. 
 
 
 

1. INTRODUCTION 
 
A multi-level wavelet decomposition splits the original 
signal spectrum into a set of frequency subbands. Crouse et 
al. [1] have modeled each wavelet node as a two-state 
Gaussian mixture, and the states sampled by a sequence of 
wavelet coefficients (connected across the scales forming a 
wavelet tree) are modeled as a Markov process. This 
results in a hidden Markov tree (HMT) model, since the 
state being sampled by a given wavelet coefficient is 
assumed unknown, or “hidden”. The HMT structure [1] 
connects each (parent) node in scale j with 2M (children) 
nodes at the next finer scale j+1, M being the 
dimensionality of the signal space. This approach ignores 
the scaling coefficients at the coarsest level from any 
parametric statistical modeling. Moreover, the links 
between the wavelet coefficients are treated as fixed rather 
than being adaptive to the statistics of the signal under 
consideration.  
 

Recently, there has been increasing interest in a more 
general class of probabilistic models of which the HMT is a 
special case. The approach, known as graphical models [2], 
tries to “learn” the complex dependencies directly from 
data rather than making a-priori assumptions on 
interactions between the hidden and the observed variables. 

In our approach, we explore possible existence of 
interactions between the wavelet coefficients not directly 
connected by the traditional HMT structure. The 
importance of including additional links beyond those in 
[1] is quantified in terms of the mutual information. The 
links between the non-adjacent wavelet node pairs are then 
added to the modified HMT structure and the Expectation-
Maximization (EM) algorithm is modified to include the 
changes in the structure.  This approach allows us to design 
a wavelet tree structure in an adaptive signal-dependent 
fashion that tries to emulate the “true” underlying 
dependencies between wavelet coefficients.  
 

In the multi-dimensional case, the discrete wavelet 
transform decomposes the original signal into a set of 
oriented frequency bands. For example, a two-dimensional 
image under discrete wavelet transform decomposes into 
four subbands: HH, HL, LH and LL, where LL represents 
the coarsest representation of the original image. In our 
approach, we include the coarsest LL subband as the 
common root node to the HH, HL and LH trees and modify 
each subband tree structure through addition of potentially 
significant links as dictated by mutual-information 
calculations. Each modified subband tree was trained 
separately via a modified EM algorithm.  

 
The remainder of the text is organized as follows. In 

Sec. 2, we discuss the adaptations of the traditional HMT 
scheme. Although our proposed strategy is independent of 
the dimensionality of the signal space, we have chosen to 
use two-dimensional signals (digital “Brodatz” images [3]) 
to illustrate the efficacy of our algorithm. The performance 
of the proposed graphical model in segmenting two-
dimensional textures is compared in Sec 3 against the 
traditional HMT quadtree structure. The work is 
summarized and conclusions are discussed in Sec. 4.  
 

2.  SIGNAL-SPECIFIC TREE DESIGN 
 
A. Wavelet Decomposition and HMT model 
 
The main drawback of the HMT-based stochastic multi-
scale modeling for multi-dimensional ( 1M > ) signals is 
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the fixed tree structure for all the subbands, independent of 
the signal under investigation. The HMT modeling also 
ignores the coarsest LL band from parametric optimization 
via the EM algorithm. However, it has been shown [4] that 
the wavelet coefficients of most “natural” images possess 
certain dependencies across scales and even the coarsest LL 
subband contains significant information about the original 
two-dimensional signal.  
 

In our modification of the HMT scheme, we place the 
scaling coefficient from the coarsest LL subband as the root 
node to each of the three subband wavelet trees. The solid 
lines in Fig. 1 represent the default interconnections present 
in the HMT for a two-level wavelet tree coupled with a 
root scaling node, whereas the dotted lines represent the 
potential additional links considered here. Our objective is 
to quantify the “importance” of all the potential dashed 
links in Fig. 1. We add to the traditional HMT structure 
those links having importance higher than a predefined 
threshold.  The EM algorithm [1] is modified appropriately 
for the adapted HMT structure.  
 

A two-dimensional image, subjected to wavelet 
decomposition, produces four decomposed signal subbands 
HH1, HL1, LH1 and LL1 (superscript represents the level of 
decomposition). The HH1 subband corresponds to the 
original signal highpass filtered in both dimensions. The 
filtering process is repeated sequentially, with LLk, HHk, 
LHk and HLk representing the filtered and downsampled 
output from LLk-1. Assume that we perform K levels of 
wavelet decomposition. Each point in HHK corresponds to 
four  (2x2) points in the HHK-1and (2K-1x2K-1) points at the 
finest resolution HH1 signal. Suppose ci,j corresponds to the 
LL subband coefficient at position (i,j). In our structure ci,j 
will be connected to the root wavelet nodes of the three 
subbands HH, HL and LH  at the same spatial location (i,j).  
 

At this point, the three subbands (HH, HL and LH) that 
resulted from a two-dimensional wavelet decomposition are 
connected via a common root node provided by the 
coarsest LL band. We implement a signal-specific tree 
modification for each of these three subbands. Given a 
traditional HMT quadtree structure [1], we quantify the 
interaction between the non-neighboring wavelet nodes 
based on mutual information. We “add” direct links 
between the tree nodes that possess mutual information 
higher than a predefined threshold. It is to be noted that the 
choice of threshold is critical to adaptive tree modification. 
A high threshold leads  no modification of the original 
HMT structure, whereas a very low threshold leads to a 
complicated HMT structure, yielding potential overfitting.  
  
B. Mutual Information-based Link importance 
quantification 

The Mutual Information (MI) quantifies the reduction of 
uncertainty in one variable due to the knowledge about the 
other. Suppose x and y are two random variables 
represented by probability distribution p(x) and p(y) 
respectively. The mutual information, I(x,y) between the 
two variables x and y is defined as 
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Where p(x,y) represents the joint probability distribution of 
x and y. 
 

In order to explore the potential of additional links 
beyond those in the traditional HMT [1], we first train the 
EM algorithm [1] on the traditional HMT (excluding the 
LL root node). This results in a Gaussian mixture model 
(GMM) for each of the five wavelet nodes (nodes 2-6 in 
Fig. 1). The root scaling node is assumed to be realized 
from a single underlying Gaussian source with its 
parameters directly estimated from the coarsest 
representation of the training samples. As explained above, 
one needs to quantify the individual marginal and the joint 
probability distribution of two random variables x and y in 
order to quantify the mutual information between them. 
The marginal distribution of the random variables 
corresponding to each node in the HMT is represented by 
Gaussian source(s) with trained parameters (means and 
variances are trained using the traditional EM algorithm, 
except for the root scaling node which is trained 
empirically using a best-fit Gaussian distribution). The joint 
probability distribution between any two nodes within a 
tree is estimated using a two-dimensional Gaussian 
distribution having a full covariance matrix. The 
covariance matrix is estimated empirically from the training 
samples of the image. Given the parametric representation 
of the marginal and joint probability distributions, we 
calculate the mutual information between a node pair (x,y) 
using equation (1). 
 

Given a tree structure with six nodes (Fig. 1), one 

could possibly have 15 ( 6
2C ) links between the node pairs, 

of which, the traditional HMT imposes four links (shown as 
solid lines in Fig. 1). Hence, for a two-level wavelet 
decomposition of an image, we focus on quantifying the 
significance of the remaining eleven possible links. It 
should be noted that the same procedure is applied for all 
three subbands individually. The traditional HMT structure 
is appended with the links that correspond to mutual 
information higher than the threshold value (Fig. 2).  
 

The details of the traditional EM algorithm are 
presented in [1]. Hence, we shall only illustrate the 
modifications needed for the adapted tree structure. As 
discussed in [1], each link between a wavelet coefficient 
pair (indexed by i and its parent p(i)) is represented by a 
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2x2 transition matrix ( , ( )
,

i p i
m nε  where m and n represent the 

states of the wavelet nodes i and p(i) respectively, 
, {0,1}m n ∈ ). In our approach, since the root node 

corresponds to a single Gaussian density, any link 
connecting the root node with one of its children is 
represented by a 2x1 matrix. As shown in Fig. 2, each leaf 
node (nodes 3-6) in each of the three subbands (HH, HL 
and LH) is connected to the top root node (node 1) directly 
and via node 2. As explained in [1], the EM algorithm for 
the hidden Markov tree structure revolves around 
estimating the intermediate model parameters (for example, 

iα  and iβ ) defined as  
 

   1\( , | ) and ( | , )i i i i i ip s m f s mα τ θ β τ θ= = = = )   (2) 
 

Since the root node is modeled as a single Gaussian 
distribution, the corresponding α  parameter, α1 = p(s1=1) 
is fixed at one. In the modified HMT structure, each leaf 
node has two parents. While calculating the parameter 
α for each one of the leaf nodes, one may choose either of 
the two links from the parent-pair. The iterative upward-
downward optimization of α ’s and β ’s result in 

parametric optimization of the modified tree structure. For 

the root scaling node,
6 2
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( 1µ and 1σ  are best-fit Gaussian parameter approximation 

of the root node having five children, refer Fig. 2) signifies 
that the likelihood of the modified tree ( 1 1α β= ) [1] 

depends jointly on the scaling node parameters and its 
interaction with the wavelet nodes (nodes 2-6 in Fig. 2). 
 
3.   TEXTURE SEGMENTATION PERFORMANCE 

 
We illustrate the efficacy of the proposed signal-specific 
hidden Markov tree design based on its performance on 
segmenting different textures. We have employed the Haar 
wavelet [5] although one might use any problem-specific 
wavelet. The proposed algorithm modifies the tree structure 
within each subband by adding the potential links beyond 
those in [1]. Although one might investigate the combined 
HMT structure and try to obtain the interactions between 
any two nodes (not necessarily in the same subband), we 
have only focused on intra-subband interactions in our 
modified tree structures since no significant performance 
gain was observed from inter-subband wavelet links. In 
other words, the potential of additional links was examined 
separately for the HH, HL and LH coefficients, with no 
links between these bands. Mutual-information calculations 
indicate that there exist minimal inter-subband 
dependencies between the wavelet coefficients for the 
synthetic textures presented here. The performance of the 
proposed algorithm is compared against the traditional 

HMT approach [1]. The comparison of the two algorithms 
yields insight into the benefit of including the statistics 
from the LL subband and the utility of modifying the HMT 
structure based on the signal statistics.  
 

We have considered synthetic textures [3] for which 
“truth” is known. Consider a two-texture image (Fig. 4a) 
generated from two textures of the image database [3]. 
Each training sample is an image block of size 4x4 pixels. 
The training samples were subjected to a two-level wavelet 
decomposition. 
 

Given a set of N=500 training trees for each of the 
three subbands (HH, HL and LH), we modify the HMT 
structure (Fig. 2) by adding links based on mutual 
information. Fig. 3 represents the distribution of the mutual 
information for different node pairs within the wavelet tree. 
The figure shows a strong correlation between the root 
scaling node with the wavelet nodes across the scales 
whereas mutual information between the wavelet nodes 
within the same scale are relatively week. As pointed 
earlier, we have also examined inter-subband wavelet 
interactions (e.g. between HH and HL coefficients) and 
found them to be very weak compared to intra-subabnd 
interactions. 
 

The “ground truth” for the texture mixture is shown in 
Fig. 4(b) where black and white represent two component 
textures. Fig. 4(c) corresponds to segmentation 
performance of the traditional HMT whereas the 
performance of the proposed algorithm is shown in Fig. 
4(d). The proposed algorithm produces better segmentation 
performance (91% vis-à-vis 85%) when compared against 
the traditional HMT structure.  
 

Most “natural” images possess strong spatial 
correlation. In [6], a spatial HMM was used to capture the 
interactions between the eight adjacent image blocks. We 
have shown here (Fig. 6) that a simple averaging of the log 
likelihoods of nine surrounding blocks (including the 
central block) based on our model achieves comparable 
performance in texture segmentation vis-a-vis HMT-HMM 
[6] scheme (Fig. 5). We infer that since the proposed 
algorithm relaxes the stringent assumptions imposed by the 
wavelet-domain HMT modeling, we observe superior 
segmentation performance as compared to the combined 
HMT-HMM scheme. Our model uses significantly less 
number of parameters since the entire set of spatial HMM 
parameters are absent. 
 

4. CONCLUSIONS 
 

We have proposed a new graphical multi-scale stochastic 
modeling scheme for wavelet coefficients in a multi-
dimensional signal space. The new algorithm allows the 
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HMT structure to adaptively add links between the wavelet 
coefficients within and across the scales.  The proposed 
scheme also models the coarsest scaling coefficients in 
conjunction with the wavelet coefficients. The algorithm is 
shown to produce better segmentation and classification for 
two-dimensional “Brodatz” images.  
  

The primary disadvantage of the new algorithm is that 
the adaptive structure might become complicated when 
three or more levels of wavelet decomposition is performed 
on the original data due to a large set of potential additional 
links. However, we expect the efficiency and flexibility of 
the approach to model all potentially important intra- and 
inter-subband interactions to outweigh the potential 
limitations. 
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                        Fig. 1                                           Fig. 2 

Fig. 1: two-level HMT structure with “direct” and potential links”   
Fig. 2: Modified HMT structure based on mutual information 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4a:  Mixture of two textures used for segmentation. 
Fig. 4b: “True” labels corresponding to texture mixture. 
Fig. 4c: 85% correct classification using traditional HMT. 
Fig. 4d: 91% correct classification using modified HMT structure 
 
 
 
 
 
 
 
 
 
 
 
                  
 
Fig. 5a: 96% correct classification using HMT-HMM scheme 
Fig. 5b: 99% correct classification using simple averaging of nine 
surrounding blocks of modified HMT outputs. 
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Fig. 3: Distribution of Mutual Information between node pairs 
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