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Abstract

For many years the Brightness Constancy Constraint
Equation (BCCE) has been used for optical flow and related
computer vision computations. However, almost all cameras
have some kind of automatic exposure feature such as Au-
tomatic Gain Control (AGC), so that the overall exposure
level of the image varies as the camera is aimed at brighter or
darker portions of a scene. Moreover, because most cameras
have some kind of unknown nonlinear response function, the
change due to AGC cannot be captured by merely applying a
multiplicative constant to the pixels of each image. We pro-
pose, therefore, a Lightspace Change Constraint Equation
(LCCE) that accounts for exposure change (AGC) together
with the nonlinear response function of the camera. The
response function can be automatically “learned” by an in-
telligent image processing system presented with differently
exposed capture of the same subject matter in overlapping re-
gions of registered images. Most importantly, a Logarithmic
Lightspace Change Constraint Equation (LLCCE) is shown
to have a very simple mathematical formulation. The LCCE
(and Log LCCE) is applied to the estimation of the projec-
tive coordinate transformation between pairs of images in a
sequence, and is compared with examples where the BCCE
fails.

1 Computer vision in lightspace (quantimet-
ric imaging)

Commonly, calculations of motion estimation performed
on images taken of the same subject with differing spa-
tial alignment are done using pixels. In past work,
Mann has shown that pixels are inadequate for many
such calculations [2]. Rather, it is argued that photo-
quantites [5][6][7]1[8]1[2] (photographic quantities) are better
suited to such calculations. In this paper we use photoquan-
tites for motion estimation to yield better results than motion
estimation using pixels.

Consider Fig. 1 which illustrates how a camera with auto-
matic exposure control takes in a typical scene. As we look
straight ahead we see mostly sky, and the exposure is quite
small. Looking to the right, at darker subject matter, the
exposure is automatically increased. In general, automatic
exposure cameras tend to capture the same subject matter
at different exposures, depending on how the pictures are
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Camera

zoom, rot., pan, tilt, fixed COP
zoom, rot., pan, tilt, free to translate

Case Scene
1 3-D
2 planar

Table 1: Fixed Center Of Projection (COP) and rigid planar patch: The
projective model is exactly justified for two “no parallax” cases for a static
scene. The second case is useful in tracking, and possibly filtering out rigid
planar patches such as advertisments that occur on billboards, as illustrated
in Fig 4.

framed. Since the differently exposed pictures depict over-
lapping subject matter, we have (once the images are regis-
tered in regions of overlap) differently exposed pictures of
identical subject matter. In the example illustrated in Fig 1,
we have six differently exposed pictures depicting parts of
the University College building and surroundings.

In this figure, the relationship between these pictures, p;,
is assumed to be given by:

p= 1 (g (S2E2))), )

where f is the camera’s response function [2], ¢ is the pho-
tographic quantity (quantimetric unit of light [5][6][?][8]),
x = (x,y) denotes the spatial coordinates of the image, k; is
a single unknown scalar exposure constant, and parameters
A;, by, ¢;, and d; denote the projective coordinate transfor-
mation between successive pairs of images: A € R**? is the
linear coordinate transformation (e.g. accounts for magnifi-
cation in each of the x and y directions and shear in each of
the z and y directions), b is the translation in each of these
two coordinate directions, and c is the projective chirp rate
in each of these two coordinate directions [1]. This model is
justified exactly under two specific cases (Table 1) where the
second case, pertaining to rigid planar patches, is used, for
example, for processing portions of images containing a bill-
board or other flat surface, an example of which is shown in
Fig 4. The additional constant d makes the coordinate trans-
formation into a group [12].

Without loss of generality, kq will be called the reference
exposure, and will be set to unity, and frame zero will be
called the reference frame, so that po = f(g). Thus we have:
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Figure 1: Automatic exposure as the cause of differently exposed pictures of the same (overlapping) subject matter. (a) Looking from inside Hart House
Soldier’s Tower, out through an open doorway, when the sky is dominant in the picture, the exposure is automatically reduced, and we can see the texture
(clouds, etc.) in the sky. We can also see University College and the CN Tower, off in the distance, to the left. (b-e) As we look up and to the right, to take
in subject matter not so well illuminated, the exposure automatically increases somewhat. We can no longer see detail in the sky, but new architectural details
inside the doorway start to become visible. (f) As we look further up and to the right, the dimly lit interior dominates the scene, and the exposure is automatically
increased dramatically. We can no longer see any detail in the sky, and even the University College building, outside, is washed out (over-exposed). However,
the inscriptions on the wall (names of soldiers killed in the war) now become visible.

Taking the logarithm of both sides,

Aix + by ~ o
e (pi (%)) — K= F~(po),¥i,0 <i < I,
3)

where K = log(k), and F~1 is the logarithmic inverse cam-
era response function.
Re-arranging, we have:

A;x +b; _ ) )
4)

This relation suggests a way to estimate the camera response
function, f, from a pair of differently exposed images of
overlapping subject matter, once the images are spatially reg-
istered.

Photographic film is traditionally characterized by the
so-called “Density versus log Exposure” characteristic
curve [3][4]. Similarly, in the case of electronic imaging,
we may also use logarithmic exposure units, @ = log(q), so
that, in areas of overlapping but identical subject matter, once
the images are registered, one image will be K = log(k)
units darker than the other:

log(f~" (p1(x))) = @ =log (f‘l (P2 (%x») N
5

The existence of an inverse for f follows from a semi-
monotonicity assumption [5][6][7][2]. The goal is to esti-
mate A, b, ¢, K, and F, from various input images, which
can be achieved using a generalization of motion estimation,
within an iterative framework, as follows:

e First compute the comparagrams between successive
pairs of images. The comparagram is a two dimen-
sional array c;; that counts how many times a pixel in
the first image has a value 7 at the same spatial loca-
tion that a pixel in the second image has the value j.

Comparagrams capture everything that can be known
about the amplitude response function f of a cam-

era [5][6][71[8][2];

e Slenderize the comparagrams to obtain the compara-
metric functions (comparagraphs) [5][6][7];

e Unroll the comparagraphs to obtain an estimate of
the response function. The unrolling can be done
using the GNU Unrolling utility from the compara-
metrics toolkit (available online, from comparamet-
ric.sourceforge.net);

e Use this estimate of the response function to determine
the photographic quantities ¢; (i.e. arrays of lixel val-
ues);

e Optional step: Tonally align the images (e.g. adjust the
effective exposures). This tonal alignment need not be
too accurate as this is simply a first guess (this step need
not even be done);

e Estimate the spatiotonal transformation between suc-
cessive pairs of images;

o Use the now registered images to obtain better estimates
of the comparagrams. Repeat as often as necessary.

2 Motion estimation with the the Lightspace
Change Constraint Equation (LCCE)

Hundreds of papers have been published on the problems
of motion estimation and frame alignment [9], and much of
this work is based on the so-called Brightness Constancy
Constraint Equation (BCCE) of Horn and Schunk [10].
However, a more general formulation, suitable for mediated
reality, is based on the Lightspace Change Constraint Equa-
tion (LCCE) [2].

Tsai and Huang [11] pointed out that the elements of the
projective group give the true camera motions with respect to
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a planar surface. Tsai and Huang explored the group struc-
ture associated with images of a 3-D rigid planar patch, as
well as the associated Lie algebra, although they assume that
the correspondence problem has been solved. The solution
presented in this paper (which does not require prior solu-
tion of correspondence) also relies on projective group the-
ory [12].

When the change from one image to another is small, op-
tical flow [10] may be used. In 1-D, the traditional optical
flow formulation assumes each point z in frame ¢ is a trans-
lated version of the corresponding point in frame ¢ + At,
and that Az and At are chosen in the ratio Az /At = w, the
translational flow velocity of the point in question.

It be shown in the computations below, that it is advanta-
geous to use the log quantimetric quantities, Q(x) at time t,
which is Q(z,t) in calculations of quantimetric flow [2] on
Q(z, t) as described by:

Q(z,t) = Q(z + Az,t + At) + K, V(x,t), (6)

where v is the translational flow velocity, and x = [z, y]
is the spatial coordinate, and Q(x, t) is the logarithm of the
camera response function of the log photoquantity, log(q).
This of course modifies and generalizes the Brightness
Change Constraint Equation, because we could obviously
evaluate the camera response function F at both sides of (6):

F(Q(z,t) = F(Q(z + Az, t + At) + K). )

However, for simplicity, it will now be understood that we
will work in lightspace @) rather than imagespace F'.

Expanding the right hand side of (6) in a Taylor series,
and canceling Oth order terms gives: uQ, + Q; + h.o.t. =
0, where Q, = dQ(z,t)/dz and Q; = dQ(x,t)/dt are
the spatial and temporal derivatives respectively, and h.o.t.
denotes higher order terms. Typically, the higher order terms
are neglected, giving the expression for the lightflow at each
point in one of the two images:

uQ; + Q=0 8

However, when automatic gain control is involved (e.g. when
there can be a gain change between successive frames of
video), we have

uQ; + Qi = —K 9)

For simplicity in the mathematical notation, we illustrate
the situation for one dimensional “images”, using the projec-
tive coordinate transformation (az + b)/(cx + d), whereas
we recognize that with A, b, and c there are actually eight
scalar parameters in place of the three a, b, and c. Neglecting
the special case in which the camera turns a full 90 degrees
between two successive frames of video, we setd = 1.

Consider the lightflow velocity given by (9) For
‘projective-flow’ (‘p-flow’) [2], substitute u = %ﬂ’ —zinto
the BCCE (9). We may estimate the parameters of projectiv-
ity in a simple manner, based on solving a linear system of
equations. To do this, we write the Taylor series of u:

utz = b+ (a—be)x+ (be—a)cx® + (a—be)Pad +- -+ (10)

Figure 3: Comparison of the proposed method with traditional methods.
(a) Motion estimation in imagespace, e.g. by using the Brightness Con-
stancy Constraint Equation (BCCE) for motion estimation between p; and
p2 gives poor results when there is a large jump from one image to the next.
(b) Parameter estimation in lightspace, e.g. by using the Lightspace Change
Constraint Equation (LCCE) to estimate the motion between f~1(p1)
and f~1(p2) gives much better results. (c) Parameter estimation in log
lightspace, e.g. by using the Log Lightspace Change Constraint Equation
(LLCCE) to estimate the motion between F~1(p1) and F~1(p2) gives the
best results. Moreover, the mathematical formulation in log lightspace is
much simpler than that of either imagespace or linear lightspace.

and use the first 3 terms, obtaining enough degrees of free-
dom to account for the 3 parameters being estimated. Letting
the squared error due to higher order terms in the Taylor se-
ries approximationbe e = Y (—h.o.t.)? = > ((b+(a—bc—
1)z+(be—a)cx?) Q. +Q;)?, a2 = (be—a)c, q; = a—be—1,
and qo = b, and differentiating with respect to each of the 4
parameters of q, setting the derivatives equal to zero, and
solving, gives the linear system of equations for projective
flow with gain:

Yz'Q; Y 2°Q; Y2’Q; Y 2’Q.][ Y’ Q. Q:
Y2’Qr Y2’Qr Y 2Qi Y Qe || B|__| X 2Q.Q:
Y2’Q YeQ: Y Qi XQ. ||v 2 Q. Qs
Em2Qw Esz ZQw El K EQt

wherea = b, 8 = (a — bc), and v = (be — a)c, and where
the two dimensionality of the images is, for simplicity, not
shown explicitly.

Note that this set of equations captures both domain and
range motion simultaneously.

2.1 Composing Images with Certainty Functions

The inverse camera response function £ —* can be used to
convert pixel values into photographic light quantities (lixel
values), and vice-vera (with f).

Once the camera response function is estimated, along
with the projective coordinate transformations between suc-
cessive frames of video, the images may be brought together
into a common coordinate space, as shown in Fig 2.

This is done by pairwise estimation of the spatiotonal co-
ordinate transformation between successive pairs of images
in the video sequence.

For an example comparison between existing methodol-
ogy, namely the use of the BCCE, and the new methods
(LCCE and LLCCE) see Fig. 3.

3 Conclusions
A new Log Quantimetric image motion has been shown to
be as easy to compute as traditional optical flow, yet deliver
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Figure 2: Successive video frames of Fig. 1 are spatiotonally aligned, so that they all appear in the same spatial (projective) coordinates, as well as in the

same tonal range (e.g. the same k value).

Figure 4. (a)(b)Two frames from a video sequence in New York city,
showing how a nice view of the Empire State building is spoiled by an of-
fensive jeans wear advertisement (e.g. a billboard depicting a man pulling
off a women’s clothes). Notice how the effect of AGC is similar to that de-
picted in Fig. 1. (a) Since a large proportion of sky is included in the image,
the overall exposure is quite low, so the image is darker. (b) Since the darker
billboard begins to enter the center portion of view, the gain increases and
the entire image is lighter. (c)(d)Two frames from the video sequence after
it has been modified (filtered). Subject matter along the planar patch of the
billboard is replaced with a view of digital eyeglasses (such as might be worn
to filter such ads). Notice how the exposure of the new matter, introduced
into the visual field of view, tracks the exposure of the offensive advertis-
ing material originally present. (c) A large proportion of sky is included in
the image, so the overall exposure is quite low, making the image darker.
The additional material inserted into the image is thus automatically made
darker, comparametrically, to match the scene it was written into. (d) Since
the original image was lighter, in this frame, the new matter introduced into
the visual reality stream is also made lighter, comparametrically, to match.

much better results.
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