
AN ADAPTIVE INITIALIZATION TECHNIQUE FOR COLOR
QUANTIZATION BY SELF ORGANIZING FEATURE MAP

Chip-Hong Chang, Rui Xiao, and Thambipillai Srikanthan

Center for High Performance Embedded Systems, Nanyang Technological University,
Blk N4, Nanyang Avenue, Singapore 639798

ABSTRACT

Unsupervised learning network such as Self Organizing Feature
Map (SOFM) has been applied successfully to color
classification for image compression and pattern recognition.
Like other vector quantization algorithms, the reconstruction
quality and adaptation rate of the SOFM are sensitive to the
neuron initialization. In this paper, we propose an efficient new
initialization method, whereby an excess number of neurons is
defined and the neurons are adaptively pruned, merged and
splitted within their lattice according to the spatial distribution of
the input color pixels. Comparisons with conventional gray scale
initialization using subsampling and butterfly jumping sequences
show the proposed method obtains good initial code vectors that
can accelerate the convergence of the SOFM and improve the
reconstructed image quality significantly.

1. INTRODUCTION

Color is one of the most significant attributes of an object on
which humans and intelligent vision systems rely to perform its
discrimination. Reduction of the image colors aids
segmentation, compression, display and transmission of images
[1, 2, 8-10]. The frequently used techniques for color reduction
are based on nearest color merging, which are in essence, a
codebook based approach [3-6]. A color codebook is a table
consists of references to a limited number of colors. By nearest
color merging, each pixel in the image is mapped to a color in
the codebook that matches closest to its true color based on some
distortion metric. The optimal selection of a smaller number of
representative colors to form a codebook for an image of higher
color resolution is called color quantization [1, 2, 8-10].

A number of approaches have been suggested for the design
of an optimal quantizer to seek the codebook that minimizes the
average distortion over all possible codebooks [1-10]. Among
which, the use of Kohonen’s self-organizing feature map
(SOFM) [2, 7, 8, 10] has become popular due to its inherent
massively parallel computing structure and the ability to adapt to
the input data through unsupervised learning. The competitive
learning algorithms used by the SOFM are gradient descent in
nature; hence the network convergence and performance are
sensitive to the initialization of the neurons. In this paper, we
propose a new initialization method for upgrading the
performance SOFM or a broader class of learning vector
quantization algorithms. In our method, a list of nodes
corresponds to an oversize codebook is defined and the cluster
membership count of each node is updated along with the input
data. The number of nodes is reduced to the size of the desired

codebook by pruning, merging and splitting operations. In the
process, the weight vectors of the nodes are modified to capture
the spatial distribution of the input data. Experimental results
indicate significant performance improvement when the SOFM
initialized by the weight vectors of the nodes is used for color
quantization.

2. LVQ AND GLA ALGORITHMS

Learning vector quantization (LVQ) is the term used to classify
unsupervised learning algorithms associated with a competitive
neural network [4, 5]. Kohonen’s SOFM is a special subset of
LVQ that incorporates a winner-take-all strategy with an
architecture amenable to VLSI implementation. If we consider
vector quantization as a constrained minimization problem of
partitioning M feature vectors to N < M codebook vectors, the
optimization procedure in SOFM is in principle comparable to
an iterative refinement clustering algorithm known as
generalized Lloyd algorithm (GLA) [3-6]. In both algorithms, a
gradient descent approach is commonly used to minimize the
generalized mean distortion, D defined as:

1

1 1

1 1M N rr

i j
i j

D x v
M N= =

 
= − 

 
∑ ∑ (1)

where ,1n

ix i M∈ ≤ ≤ , { }1 2, , , n
j Nv v v v∈ ⊂ and { }0r ∈ − .

In most practical application, r = 2.
Let vc = vc(t) be the closest codebook vector to the input

vector, x = x(t) in the n-dimension Euclidean space, n . The
following steepest decent gradient sequence in discrete time
formalism asymptotically minimize the distortion of (1) based on
square-error criterion (r = 2):

 () () () () ()
() ()

1

1
c c c

i i

v t v t t x t v t

v t v t for i c

α+ = + −

+ = ≠
 (2)

where α(t) is a monotonically decreasing sequence of scalar-
value gain coefficients, 0 < α(t) < 1.

For a given partition of the feature space, each codebook
vector must be the centroid of the input vectors that are mapped
to it. The way the centroid condition is satisfied is perhaps the
most significant difference between LVQ and GLA algorithms.
LVQ begins with an initial set of N topologically connected
neurons whose values represent the codebook vectors, where N
is the desired number of codebook vectors. Each time an input
vector is presented, the neurons compete for the opportunity to

III - 4770-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

update their values. Only the winner and its topologically related
neighbors will reduce its distortion relative to the input vector
according to (2). On the other hand, GLA algorithm decouples
the processes of nearest neighbors’ assignment and centroid
updating. An initial set of N or fewer codebook vectors are
chosen arbitrarily or based on some evenly spaced points in the
input vector space. Each input vector is first assigned to its best-
matched codebook vector through an exhaustive search. Then,
the codebook vector is modified to minimize its distortion with
respect to the set of input vectors assigned to it. The two-step
process iterates until the overall distortion of (1) changes by a
small fraction between two iterations. Some GLA algorithms
begin with a single codebook vector and use a splitting technique
[3, 6] to expand the codebook size until the desired number of
codebook vectors is reached.

3. NEW INITIALIZATION TECHNIQUE

The reliance on alternating projections makes LVQ and GLA
algorithms susceptible to the local minimum problem due to
inappropriately chosen initialization. It has been observed that
both the convergence rate and reconstruction quality based on
the converged codebook depends heavily on the initial codebook
vectors [6]. To improve the performance of codebook-based
quantization, we propose an adaptive initialization (AI) method
as oppose to fixed and randomized initializations for LVQ
algorithm. For ease of exposition, we illustrate the concept by a
typical application of color quantization based on Kohonen
SOFM.

We first define some notations. The input vector is
represented by xi = [r, g, b] where r, g, b ∈ {0, 1, …, 255}
correspond to the red, green and blue tristimulus intensities of
the color value. The RGB colorspace is partitioned into a three-
dimensional lattice structure with Q3 = Q×Q×Q nodes uniformly
distributed on the grid intersections. Each node, v has as
attributes a weight vector, wv, a topology vector ςv and a
membership counter, fv. Q3 = βN where N is the final codebook
size and β a scaling factor to modulate the disparity between
pixel clusters associated with adjacent nodes.

The topology vector of each node is assigned according to its
coordinate values along the R, G and B axes in the 3D RGB
colorspace, i.e, ς = [i, j, k] where 0 ≤ i, j, k < Q. Initially, each
node is allocated a weight vector proportional to its topology
vector. For a node v with ςv = [i, j, k], wv = [round(255i/(Q−1)),
round(255j/(Q−1)), round(255k/(Q−1))], where round(a)
produces an integer b such that |b−a| ≤ 0.5. The membership
counters of all nodes are initialized to 0. The membership
counters are updated through one pass of all the input training
pixels, xi = [ri, gi, bi], i = 1, 2, …, M. The counter, fv is
incremented if an input vector falls within the cube of length
256/(Q−1) centered at node v. It is easy to determine the nearest
node to the input vector as the topology vector of the best match
node, c can be computed from the input vector by:

() () ()















 −







 −







 −=

255
1,

255
1,

255
1 QbroundQgroundQrround iii

cς
 (3)

Fig. 1 shows an example of the lattice structure of 3×3×3

nodes (Q = 3) in the RGB space and an input pixel x = [48, 198,
130] under the shaded cubic region of influence centered at the

node with ς = [0, 2, 1]. It should be noted that the nearest node
to the input pixel can be identified and its membership counter
incremented without the need for an exhaustive search. If a
decision tree or a link list is used to arrange the nodes, the
nodes can be sorted in ascending order of membership count as
the input pixels are presented.

Figure 1. A lattice structure of 27 nodes.

After one pass of M input training pixels, a list of nodes

sorted in order of its membership count is obtained. Three
operations, namely delete, merge and split are applied to reduce
the total number of nodes down to the desired codebook size N.
Nodes with f = 0 are deleted from the list. Merge operation
combines a low membership node with an adjacent high
membership node, thus reducing the number of nodes by one.
Split operation inserts a node between two adjacent high
membership nodes. A node u is said to be the neighbor of node
v if the topological adjacency, ||ςv − ςu|| ≤ 1 is satisfied.
Consider the two adjacent nodes u and v with wv = [wv1, wv2,
wv3] and wu = [wu1, wu2, wu3]. If fv < fu, upon merging, node v
will be deleted from the list and node u replaced by u’ with the
membership count and weight vector given by:

'

'

u u v

u u v v
u

u v

f f f
w f w fw

f f

= +
+=
+

 (4)

Fig. 2 illustrates the merge operation where node v is a low

membership node and node u is the densest node among the six
neighborhood of v.

Figure 2. Merge operation.

III - 478

➡ ➡

 In split operation, a new node t is generated between two

adjacent nodes u and v chosen for splitting. The membership
count and the weight vector of the newly generated node, t are
given by:

()1' '
3t v u u v

u u v v
t

u v

f f f f f

w f w fw
f f

= = = +

+=
+

 (5)

The membership counts of u and v are modified to that of t
but their weight vectors remain unchanged. The effect of
splitting is exemplified in Fig. 3. It should be noted that the
topology vector of any new node generated from the merge and
split operation can be calculated from its weight vector by (3).

Figure 3. Split operation.

 Assume a sorted list, L of Q nodes is obtained after one pass
of the input pixels, the procedure to reduce the cardinality of L to
N is described as follows:
(1) Delete all nodes with zero membership count.
(2) If |L| > N, select a node v ∈ L such that minv ii L

f f
∈

= . Select a

node u from the neighborhood of v with the highest
membership count, apply a merge operation between nodes u
and v. Delete nodes u and v and insert the merged node u’
with its attributes determined by (4) into the sorted list, i.e.,
L = L – {u, v} + {u’}. If there is no node with adjacency ≤ 1
to node v, delete node v if fv < τ, where τ is a predefined
threshold value to differentiate between noises and clusters
of minority colors that can be preserved.

(3) If |L| < N, select a node v ∈ L such that maxv ii L
f f

∈
= . Select a

node u from the neighborhood of v with the highest
membership count, apply a split operation to generate a new
node u’ and modified the attributes of all nodes involved
according to (5). Insert u’ into the sorted list, i.e., L = L +
{u’}. If there is no node with adjacency ≤ 1 to node v, the
next higher membership node of L is sought and the same
split operation is executed.

(4) Repeat Steps (2) and (3) until |L| = N.
The weight vectors of the final list of nodes will be used to

initialize the N neurons of the SOFM. In order to discriminate in
favor of the vital colors while preserving minority colors when
the neuron number exceeds the number of major colors, τ is set
equal to the membership counter value of the Nth node in the list
sorted in descending order of f.

4. PERFORMANCE EVALUATION

To show the effectiveness of our new adaptive initialization
method (AI) in helping the SOFM to achieve better
reconstructed quality as well as faster convergence in color
quantization, a set of experiments are carried out on different
sizes of SOFM initialized by our proposed AI (β = 8) and the
widely adopted gray scale initialization (GSI) [7, 8, 10]. Three
24-bit true color images, Lena, Pepper and Baboon taken from
the USC image database are used to train the network. All the
images are of size 512×512 pixels.

The test images are fed into the initialized SOFM in two
ways: a raster scan sequence with subsampling (SUB) and a
butterfly jumping sequence (BF) from [8]. By subsampling, the
test image is divided into blocks of 8×8 pixels and one pixel per
block is fed into the SOFM in a raster scan order. The next pixel
from each block is fed when all pixels of the same intra-block
coordinate have exhausted. The BF sequence keeps maximally
distinct data fed in the neural network. The purpose of testing
with different input sequences is to evaluate if our AI method
can also help to desensitize the performance of SOFM from the
ordering of data input.

For (2), we use the l1 norm and the learning rate function
suggested by [8], which can be re-expressed in our context as:

() () mod0 t st kα α= (6)

where α(0) and k are both set to 0.85, and s is the sweep number
defined as the ratio of the image size to the block size (skip
factor) of the subsampling or butterfly sequence. In our case, s =
512×512/(8×8) = 4096.

The Peak Signal to Noise Ratios (PSNRs) of the images
reconstructed from the codebooks generated by the SOFM
initialized by AI and GSI methods are compared. The PSNR is
defined as:

()

2

1
2

0

3 25510log

'
M

i i
i

PSNR
MSE

x x
MSE

M

−

=

×=

−
=
∑

 (7)

where xi and xi’ are the pixel values of the original and the
reconstructed images, respectively and M is the total number of
pixels. The fractional drop of distortion [4], ∆D < 0.001 in two
consecutive training epochs is adopted as the convergence
criterion, where each epoch consists of 8s pixels. The fractional
drop of distortion, ∆D is given by:

1| |
, mod8i i

i

MSE MSE
D i t s

MSE
− −

∆ = = (8)

The PSNR results of the three test images reconstructed from

the codebooks generated by AI and GSI initialized SOFMs are
plotted in Fig. 4 for SUB input sequence and Fig. 5 for BF
sequence, respectively. The codebook size ranges from 16 to 256
and the PSNRs shown are taken after the networks have
converged.

III - 479

➡ ➡

0 50 100 150 200 250
24

26

28

30

32

34

36

PS
N

R
(in

 d
B)

Codebook Size

Lena A I
Lena GSI
Baboon AI
Baboon GSI
Pepper AI
Pepper GSI

Figure 4. Comparison of PSNRs for Lena, Baboon and Pepper

images for AI and GSI methods in subsampling SOFM.

0 50 100 150 200 250
24

26

28

30

32

34

36

PS
N

R
(in

 d
B)

Codebook Size

Lena AI
Lena GSI
Baboon AI
Baboon GSI
Pepper AI
Pepper GSI

Figure 5. Comparison of PSNRs for Lena, Baboon and Pepper

images for AI and GSI methods in BF SOFM.

It is evident that the proposed new initialization technique (AI)
produces better codebooks with higher PSNRs for SOFM with
SUB and BF input sequences, indicating the effectiveness of the
initialization method is relatively unaffected by the order of
input data. The improvement in the reconstruction quality is
significant when the network size is large, particularly for
smooth images like Lena and Pepper. A conspicuous 3dB
performance gain is achieved over the GSI SOFM for these
images when the codebook size exceeds 150. In general, the AI
SOFM converges an epoch (equivalent to 1/8 of the total training
time) ahead of the GSI SOFM.

(a) by AI method (b) by GSI method

Figure 6. Subjective evaluation of the reconstructed Lena
in 256-neuron SOFM with SUB input sequence.

The reconstructed Lena using AI and GSI SOFM of 256
neurons are shown in Fig. 6 for a subjective evaluation. In
regions of slow color transition, abrupt color changes are
noticeable in the image reconstructed from codebook generated
by GSI SOFM whereas the AI SOFM preserves the subtle color
features of those regions.

5. CONCLUSION

A simple and efficient method (AI) for codebook initialization
has been proposed. The method is most suitable for augmenting
the performance of LVQ and GLA algorithms in color
classification applications. It uses the M input data to update the
density information of βN evenly distributed cluster centroids
over the feature space in O(M) computational complexity. The
number of clusters is subsequently reduced to N codebook
vectors by pruning useless clusters, and merging and splitting
adjacent clusters. The overall computational complexity is O(M
+ βN) which is much lower than O(MN) complexity of GLA
initialization method of [6] since β << M. Simulation results
comparing the performance of SOFM initialized by the new AI
scheme and the conventional gray scale initialization have
demonstrated the effectiveness of our new scheme.

6. REFERENCES

[1] J.P. Braquelaire and L. Brun, “Comparison and optimization
of methods of color image quantization,” IEEE Trans. Image
Process., vol. 6, no. 7, pp. 1048-1052, 1997.
[2] C.H. Chang, R. Xiao and T. Srikanthan, “A MSB-biased self-
organizing feature map for still color image compression,” in
Proc. IEEE Asia Pacific Conf. on Ciruits and Syst., 2002.
[3] W. Equitz, “A new vector quantization clustering algorithm,”
IEEE Trans. Acoustics, Speech and Signal Proc., vol. 37, no.
10, pp. 1568-1575, 1989.
[4] A. Gersho and R.M. Gray, Vector Quantization and Signal
Compression. Kluwer Academic, 1992.
[5] N.B. Karayiannis, “Soft learning vector quantization and
clustering algorithms based on ordered weighted aggregation
operators,” IEEE Trans. On Neural Networks, vol. 11, no. 5, pp.
1093-1105, 2000.
[6] I. Katsavounidis, C.-C. J. Kuo and Z. Zhang, “ A New
Initialization technique for generalized Lloyd iteration,” IEEE
Signal Process. Lett., vol. 1, no. 10, pp. 144-146, 1994.
[7] T. Kohonen, “The self-organizing map,” Proc. of the IEEE,
vol. 78, no. 9, pp. 1464-1479, 1990.
[8] S.C. Pei and Y.S. Lo, “Color image compression and limited
display using self-organization Kohonen map,” IEEE Trans.
Circuits Syst. Video Techno., vol. 8, no. 2, pp. 191-205, 1998.
[9] G. Sharma and H. J. Trusell, “Digital color imaging,” IEEE
Trans. Image Process., vol. 6, no. 7, pp. 901-932, 1997.
[10] R. Xiao, C.H. Chang and T. Srikanthan, “On the
initialization and training methods for Kohonen self-organizing
feature maps in color image quantization,” in Proc. 1st Int.
Workshop on Electronic Design, Test and Applications,
Christchurch, New Zealand, pp. 321-325, 2002.

III - 480

➡ ➠

