
AN ADAPTIVE INITIALIZATION TECHNIQUE FOR COLOR 
QUANTIZATION BY SELF ORGANIZING FEATURE MAP 

 
Chip-Hong Chang, Rui Xiao, and Thambipillai Srikanthan  

Center for High Performance Embedded Systems, Nanyang Technological University,  
Blk N4, Nanyang Avenue, Singapore 639798 

 
ABSTRACT 

 
Unsupervised learning network such as Self Organizing Feature 
Map (SOFM) has been applied successfully to color 
classification for image compression and pattern recognition. 
Like other vector quantization algorithms, the reconstruction 
quality and adaptation rate of the SOFM are sensitive to the 
neuron initialization. In this paper, we propose an efficient new 
initialization method, whereby an excess number of neurons is 
defined and the neurons are adaptively pruned, merged and 
splitted within their lattice according to the spatial distribution of 
the input color pixels. Comparisons with conventional gray scale 
initialization using subsampling and butterfly jumping sequences 
show the proposed method obtains good initial code vectors that 
can accelerate the convergence of the SOFM and improve the 
reconstructed image quality significantly. 
 

1. INTRODUCTION 
 

Color is one of the most significant attributes of an object on 
which humans and intelligent vision systems rely to perform its 
discrimination.  Reduction of the image colors aids 
segmentation, compression, display and transmission of images 
[1, 2, 8-10]. The frequently used techniques for color reduction 
are based on nearest color merging, which are in essence, a 
codebook based approach [3-6]. A color codebook is a table 
consists of references to a limited number of colors. By nearest 
color merging, each pixel in the image is mapped to a color in 
the codebook that matches closest to its true color based on some 
distortion metric. The optimal selection of a smaller number of 
representative colors to form a codebook for an image of higher 
color resolution is called color quantization [1, 2, 8-10]. 

A number of approaches have been suggested for the design 
of an optimal quantizer to seek the codebook that minimizes the 
average distortion over all possible codebooks [1-10]. Among 
which, the use of Kohonen’s self-organizing feature map 
(SOFM) [2, 7, 8, 10] has become popular due to its inherent 
massively parallel computing structure and the ability to adapt to 
the input data through unsupervised learning. The competitive 
learning algorithms used by the SOFM are gradient descent in 
nature; hence the network convergence and performance are 
sensitive to the initialization of the neurons. In this paper, we 
propose a new initialization method for upgrading the 
performance SOFM or a broader class of learning vector 
quantization algorithms. In our method, a list of nodes 
corresponds to an oversize codebook is defined and the cluster 
membership count of each node is updated along with the input 
data. The number of nodes is reduced to the size of the desired 

codebook by pruning, merging and splitting operations. In the 
process, the weight vectors of the nodes are modified to capture 
the spatial distribution of the input data. Experimental results 
indicate significant performance improvement when the SOFM 
initialized by the weight vectors of the nodes is used for color 
quantization.  
   

2. LVQ AND GLA ALGORITHMS 
 

Learning vector quantization (LVQ) is the term used to classify 
unsupervised learning algorithms associated with a competitive 
neural network [4, 5]. Kohonen’s SOFM is a special subset of 
LVQ that incorporates a winner-take-all strategy with an 
architecture amenable to VLSI implementation. If we consider 
vector quantization as a constrained minimization problem of 
partitioning M feature vectors to N < M codebook vectors, the 
optimization procedure in SOFM is in principle comparable to 
an iterative refinement clustering algorithm known as 
generalized Lloyd algorithm (GLA) [3-6]. In both algorithms, a 
gradient descent approach is commonly used to minimize the 
generalized mean distortion, D defined as: 
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In most practical application, r = 2. 
Let vc = vc(t) be the closest codebook vector to the input 

vector, x = x(t) in the n-dimension Euclidean space, n . The 
following steepest decent gradient sequence in discrete time 
formalism asymptotically minimize the distortion of (1) based on 
square-error criterion (r = 2): 
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where α(t) is a monotonically decreasing sequence of scalar-
value gain coefficients, 0 < α(t) < 1. 

For a given partition of the feature space, each codebook 
vector must be the centroid of the input vectors that are mapped 
to it. The way the centroid condition is satisfied is perhaps the 
most significant difference between LVQ and GLA algorithms. 
LVQ begins with an initial set of N topologically connected 
neurons whose values represent the codebook vectors, where N 
is the desired number of codebook vectors. Each time an input 
vector is presented, the neurons compete for the opportunity to 
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update their values. Only the winner and its topologically related 
neighbors will reduce its distortion relative to the input vector 
according to (2). On the other hand, GLA algorithm decouples 
the processes of nearest neighbors’ assignment and centroid 
updating. An initial set of N or fewer codebook vectors are 
chosen arbitrarily or based on some evenly spaced points in the 
input vector space. Each input vector is first assigned to its best-
matched codebook vector through an exhaustive search. Then, 
the codebook vector is modified to minimize its distortion with 
respect to the set of input vectors assigned to it. The two-step 
process iterates until the overall distortion of (1) changes by a 
small fraction between two iterations.  Some GLA algorithms 
begin with a single codebook vector and use a splitting technique 
[3, 6] to expand the codebook size until the desired number of 
codebook vectors is reached.  
 

3. NEW INITIALIZATION TECHNIQUE 
 

The reliance on alternating projections makes LVQ and GLA 
algorithms susceptible to the local minimum problem due to 
inappropriately chosen initialization. It has been observed that 
both the convergence rate and reconstruction quality based on 
the converged codebook depends heavily on the initial codebook 
vectors [6].  To improve the performance of codebook-based 
quantization, we propose an adaptive initialization (AI) method 
as oppose to fixed and randomized initializations for LVQ 
algorithm. For ease of exposition, we illustrate the concept by a 
typical application of color quantization based on Kohonen 
SOFM.  

We first define some notations. The input vector is 
represented by xi = [r, g, b] where r, g, b ∈ {0, 1, …, 255} 
correspond to the red, green and blue tristimulus intensities of 
the color value. The RGB colorspace is partitioned into a three-
dimensional lattice structure with Q3 = Q×Q×Q  nodes uniformly 
distributed on the grid intersections. Each node, v has as 
attributes a weight vector, wv, a topology vector ςv and a 
membership counter, fv.  Q3 = βN where N is the final codebook 
size and β a scaling factor to modulate the disparity between 
pixel clusters associated with adjacent nodes.  

The topology vector of each node is assigned according to its 
coordinate values along the R, G and B axes in the 3D RGB 
colorspace, i.e, ς = [i, j, k] where 0 ≤ i, j, k < Q. Initially, each 
node is allocated a weight vector proportional to its topology 
vector. For a node v with ςv = [i, j, k], wv = [round(255i/(Q−1)),  
round(255j/(Q−1)), round(255k/(Q−1))], where round(a) 
produces an integer b such that |b−a| ≤ 0.5. The membership 
counters of all nodes are initialized to 0. The membership 
counters are updated through one pass of all the input training 
pixels, xi = [ri, gi, bi], i = 1, 2, …, M.  The counter, fv is 
incremented if an input vector falls within the cube of length 
256/(Q−1) centered at node v.  It is easy to determine the nearest 
node to the input vector as the topology vector of the best match 
node, c can be computed from the input vector by: 
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Fig. 1 shows an example of the lattice structure of 3×3×3 

nodes (Q = 3) in the RGB space and an input pixel x = [48, 198, 
130] under the shaded cubic region of influence centered at the 

node with ς = [0, 2, 1]. It should be noted that the nearest node 
to the input pixel can be identified and its membership counter 
incremented without the need for an exhaustive search. If a 
decision tree or a link list is used to arrange the nodes, the 
nodes can be sorted in ascending order of membership count as 
the input pixels are presented.    

 
Figure 1. A lattice structure of 27 nodes. 

 
After one pass of M input training pixels, a list of nodes 

sorted in order of its membership count is obtained. Three 
operations, namely delete, merge and split are applied to reduce 
the total number of nodes down to the desired codebook size N.  
Nodes with f = 0 are deleted from the list. Merge operation 
combines a low membership node with an adjacent high 
membership node, thus reducing the number of nodes by one. 
Split operation inserts a node between two adjacent high 
membership nodes. A node u is said to be the neighbor of node 
v if the topological adjacency, ||ςv − ςu|| ≤ 1 is satisfied. 
Consider the two adjacent nodes u and v with wv = [wv1, wv2, 
wv3] and wu = [wu1, wu2, wu3]. If fv < fu, upon merging, node v 
will be deleted from the list and node u replaced by u’ with the 
membership count and weight vector given by: 
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Fig. 2 illustrates the merge operation where node v is a low 

membership node and node u is the densest node among the six 
neighborhood of v. 

 
Figure 2.  Merge operation. 
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 In split operation, a new node t is generated between two 

adjacent nodes u and v chosen for splitting. The membership 
count and the weight vector of the newly generated node, t are 
given by: 
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The membership counts of u and v are modified to that of t 
but their weight vectors remain unchanged. The effect of 
splitting is exemplified in Fig. 3. It should be noted that the 
topology vector of any new node generated from the merge and 
split operation can be calculated from its weight vector by (3).  

 

 
Figure 3. Split operation. 

 

 Assume a sorted list, L of Q nodes is obtained after one pass 
of the input pixels, the procedure to reduce the cardinality of L to 
N is described as follows: 
(1) Delete all nodes with zero membership count. 
(2) If |L| > N, select a node v ∈  L such that minv ii L

f f
∈

= . Select a 

node u from the neighborhood of v with the highest 
membership count, apply a merge operation between nodes u 
and v. Delete nodes u and v and insert the merged node u’ 
with its attributes determined by (4) into the sorted list, i.e., 
L = L – {u, v} + {u’}.  If there is no node with adjacency ≤ 1 
to node v, delete node v if fv < τ, where τ is a predefined 
threshold value to differentiate between noises and clusters 
of minority colors that can be preserved. 

(3) If |L| < N, select a node v ∈  L such that maxv ii L
f f

∈
= . Select a 

node u from the neighborhood of v with the highest 
membership count, apply a split operation to generate a new 
node u’ and modified the attributes of all nodes involved 
according to (5). Insert u’ into the sorted list, i.e., L = L + 
{u’}.  If there is no node with adjacency ≤ 1 to node v, the 
next higher membership node of L is sought and the same 
split operation is executed. 

(4) Repeat Steps (2) and (3) until |L| = N. 
The weight vectors of the final list of nodes will be used to 

initialize the N neurons of the SOFM. In order to discriminate in 
favor of the vital colors while preserving minority colors when 
the neuron number exceeds the number of major colors, τ is set 
equal to the membership counter value of the Nth node in the list 
sorted in descending order of f. 

 
4. PERFORMANCE EVALUATION 

 
To show the effectiveness of our new adaptive initialization 
method (AI) in helping the SOFM to achieve better 
reconstructed quality as well as faster convergence in color 
quantization, a set of experiments are carried out on different 
sizes of SOFM initialized by our proposed AI  (β = 8) and the 
widely adopted gray scale initialization (GSI) [7, 8, 10]. Three 
24-bit true color images, Lena, Pepper and Baboon taken from 
the USC image database are used to train the network. All the 
images are of size 512×512 pixels.  

The test images are fed into the initialized SOFM in two 
ways: a raster scan sequence with subsampling (SUB) and a 
butterfly jumping sequence (BF) from [8].  By  subsampling, the 
test image is divided into blocks of 8×8 pixels and one pixel per 
block is fed into the SOFM in a raster scan order. The next pixel 
from each block is fed when all pixels of the same intra-block 
coordinate have exhausted. The BF sequence keeps maximally 
distinct data fed in the neural network. The purpose of testing 
with different input sequences is to evaluate if our AI method 
can also help to desensitize the performance of SOFM from the 
ordering of data input.  

For (2), we use the l1 norm and the learning rate function 
suggested by [8], which can be re-expressed in our context as: 

 

( ) ( ) mod0 t st kα α=                                                          (6)    
 
where α(0) and k are both set to 0.85, and s is the sweep number 
defined as the ratio of the image size to the block size (skip 
factor) of the subsampling or butterfly sequence. In our case, s = 
512×512/(8×8) = 4096.  

The Peak Signal to Noise Ratios (PSNRs) of the images 
reconstructed from the codebooks generated by the SOFM 
initialized by AI and GSI methods are compared. The PSNR is 
defined as: 
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where xi and xi’ are the pixel values of the original and the 
reconstructed images, respectively and M is the total number of 
pixels. The fractional drop of distortion [4], ∆D < 0.001 in two 
consecutive training epochs is adopted as the convergence 
criterion, where each epoch consists of 8s pixels. The fractional 
drop of distortion,  ∆D is given by: 
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The PSNR results of the three test images reconstructed from 

the codebooks generated by AI and GSI initialized SOFMs are 
plotted in Fig. 4 for SUB input sequence and Fig. 5 for BF 
sequence, respectively. The codebook size ranges from 16 to 256 
and the PSNRs shown are taken after the networks have 
converged. 
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Figure 4. Comparison of PSNRs for Lena, Baboon and Pepper 

images for AI and GSI methods in subsampling SOFM. 

0 50 100 150 200 250
24

26

28

30

32

34

36

PS
N

R 
(in

 d
B)

Codebook Size

Lena AI
Lena GSI
Baboon AI
Baboon GSI
Pepper AI
Pepper GSI

 
Figure 5. Comparison of PSNRs for Lena, Baboon and Pepper 

images for AI and GSI methods in BF SOFM. 
 

It is evident that the proposed new initialization technique (AI) 
produces better codebooks with higher PSNRs for SOFM with 
SUB and BF input sequences, indicating the effectiveness of the 
initialization method is relatively unaffected by the order of 
input data. The improvement in the reconstruction quality is 
significant when the network size is large, particularly for 
smooth images like Lena and Pepper. A conspicuous 3dB 
performance gain is achieved over the GSI SOFM for these 
images when the codebook size exceeds 150. In general, the AI 
SOFM converges an epoch (equivalent to 1/8 of the total training 
time) ahead of the GSI SOFM. 
 

 
(a) by AI method                           (b) by GSI method 

Figure 6. Subjective evaluation of the reconstructed Lena 
in 256-neuron SOFM with SUB input sequence. 

 

The reconstructed Lena using AI and GSI SOFM of 256 
neurons are shown in Fig. 6 for a subjective evaluation.  In 
regions of slow color transition, abrupt color changes are 
noticeable in the image reconstructed from codebook generated 
by GSI SOFM whereas the AI SOFM preserves the subtle color 
features of those regions. 
 

5. CONCLUSION 
 

A simple and efficient method (AI) for codebook initialization 
has been proposed. The method is most suitable for augmenting 
the performance of LVQ and GLA algorithms in color 
classification applications. It uses the M input data to update the 
density information of βN evenly distributed cluster centroids 
over the feature space in O(M) computational complexity.  The 
number of clusters is subsequently reduced to N codebook 
vectors by pruning useless clusters, and merging and splitting 
adjacent clusters. The overall computational complexity is O(M 
+ βN) which is much lower than O(MN) complexity of GLA 
initialization method of [6] since β << M. Simulation results 
comparing the performance of SOFM initialized by the new AI 
scheme and the conventional gray scale initialization have 
demonstrated the effectiveness of our new scheme.  
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