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ABSTRACT

In this paper, we apply generalized sampling to image-
based rendering (IBR) data, more specifically, the light-
field. We show that in theory the lowest sampling rate of
lightfield when we use generalized sampling can be as
low as half of that when we use rectangular sampling.
However, in practice rectangular sampling has several
advantages over generalized sampling. We analyze the
pros and cons for each sampling approach, and explain
why in practice rectangular sampling is still more prefer-
able.

1. INTRODUCTION

Image-based rendering (IBR) has attracted a lot of atten-
tion recently. Proposed by Adelson and Bergen [1] as a
7D plenoptic function, IBR models a 3D dynamic scene
by recording the light rays at every space location, to-
wards every possible direction, over any range of wave-
lengths and at any time. By removing the time and the
wavelength dimensions, McMillan and Bishop [2] de-
fined plenoptic modeling as generating a continuous 5D
plenoptic function from a set of discrete samples. The
concepts of Lightfield by Levoy and Hanrahan [3] and
Lumigraph by Gortler et al. [4] effectively parameterized
the plenoptic function into a 4D function under the con-
straint that the object lies in free space.

The principle of the lightfield [3] can be briefly
explained as follows. Light rays from an object can be
parameterized by their intersections with two planes, one
plane indexed with coordinate ( )vu, and the other with

coordinate ( )ts, . In Figure 1, we show an example where

the two planes, the camera plane and the focal plane, are
parallel. An example light ray is shown and indexed as
( )0000 ,,, tsvu . The coordinates are then discretized so that

a finite number of light rays are recorded. In practice, we
put on the camera plane a 2D array of cameras, which
share the same focal plane. The images captured form a
2D array of images. To create a new view of the object,
we just split the view into its light rays, which are then
calculated by interpolating existing nearby light rays in

the image array. The new view is then generated by reas-
sembling the split rays together.
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Figure 1 Lightfield parameterization.

Since the number of images taken in lightfield is often
huge, it is very important to know the minimum sampling
requirement for a specific scene. In this paper, we apply
generalized sampling (GS) [7] to lightfield. We adopt the
spectrum analysis results by Chai et al. [5] and show that
with generalized sampling the sampling efficiency can be
improved by a factor of 2 compared with rectangular
sampling (RS). However, when we use GS in practice, we
find many limitations. In this paper, we will analyze the
two approaches and show that RS is preferable for practi-
cal IBR applications.

The paper is organized as follows. Section 2 gives a
brief review on some previous work. We apply GS to
lightfield and discuss the reconstruction problem in Sec-
tion 3. Some experimental results are given in Section 4.
Discussions and conclusions are presented in Section 5.

2. REVIEW OF THE PREVIOUS WORK

Recently Chai et al. [5] proposed a method to study the
frequency spectrum of lightfield. Let the lightfield be
( )tsvul ,,, and its Fourier transform be ( )tsvuL ΩΩΩΩ ,,, .

Assuming Lambertian surfaces and no occlusion, they
showed that the spectral support of a lightfield signal is
bounded by the minimum and maximum depths of objects
in the scene, no matter how complicated the scene is.
Figure 2 (a) shows the spectrum of a 2D lightfield pre-
dicted by their theory, where f is the focal length of the
cameras, zmin and zmax are the minimum and maximum
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depths of the scene. Without loss of generality we assume
that along vΩ the spectrum is bounded due to finite reso-

lution of the camera (capturing camera or rendering cam-
era) or the texture on the objects, whichever is lower, and
we let the resolution be unity.
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Figure 2 Sampling analysis of lightfield in [5]. (a) Fre-
quency support of a scene with no occlusion and with Lam-
bertian surfaces. (b) The “Optimal” compacting and the
reconstruction filter in [5].

The analysis in [5] provides a good first-order ap-
proximation of the spectrum analysis of IBR. It further
claimed that by knowing the bound of the support, the
maximum sampling density could be achieved by com-
pacting copies of the spectral support rectangularly in the
frequency domain as Figure 2 (b). The optimal recon-
struction filter is also shown in Figure 2 (b) with bold
contours. It happens to be well approximated by the
depth-driven bilinear interpolation filter already used in
the Lumigraph paper [4]. The optimal rendering depth
zopt can also be obtained from the above figure, which is

[ ]maxmin 112 zzzopt += (1)

In [6], Chan and Shum proposed to view the plenoptic
sampling problem as a multidimensional sampling prob-
lem. Their analysis is conceptually important because it
implies that we can apply generalized sampling to light-
field. They mentioned that “it is also possible to deter-
mine the minimum sampling densities for the quincunx
and hexagonal sampling lattices” without further detail.
We will explore this in more details in the following sec-
tions.

3. GENERALIZED SAMPLING FOR LIGHTFIELD

Figure 3 (a) shows how we can compact the frequency
support and the replicas better with generalized sampling
theory. With this sampling strategy, the sampling effi-
ciency can be improved by a factor of 2 compared with
Figure 2 (b), which means we only need 50% of the sam-
ples. The reconstruction filter is marked in bold contour
in Figure 3 (a), which is a tilted fan-like filter. For de-
tailed information about the generalized sampling theory,
we refer the reader to [7].
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Figure 3 Generalized sampling of lightfield. (a) The most
compact way to pack the lightfield spectrum. (b) Reduce the
sampling rate such that GS has the same efficiency as RS in
Figure 2 (b).

There are several problems to be concerned for the
GS approach. First, the corresponding sampling lattice in
the spatial domain for Figure 3 (a) may not be consistent
with how we take images for the scene. We propose to
sample the scene with RS at a higher sampling rate and
then down-sample it to the required lattice. Interpolation
may be required during the down-sampling process. Of
course, interpolation will introduce extra errors in prac-
tice. This is what GS has to pay to achieve a lower sam-
pling rate.

Second, during the rendering, there can be two ap-
proaches to reconstruct the continuous lightfield signal
from the GS sampled data. One is to introduce a preproc-
essing stage before rendering. At this stage we up-sample
the data to a rectangular grid by a discrete fan-like recon-
struction filter. During the rendering we can simply apply
depth-driven bilinear interpolation as before. This ap-
proach requires huge amount of memory to store the up-
sampled data, but has a fast rendering speed. Another
approach is to use a continuous fan-like reconstruction
filter directly for rendering. Since it is difficult to find the
best continuous filter given its finite support (which is
required in rendering due to speed consideration), we
design a discrete optimal reconstruction filter first and
interpolate it to get the continuous filter. To speed up the
rendering, look-up tables can be used to store the filter
values. We adopt the second approach in the follow sec-
tions because it does not need much memory to store the
up-sampled data.

Third, in theory we may be able to design an ideal
fan-like reconstruction filter to get back the original light-
field signal without losing any information; in practice,
however, we cannot design a filter without any transition
band. We choose to reduce the sampling density for the
ease of filter design. To give a fair comparison between
GS and RS, we let them have the same sampling density,
as is shown in Figure 2 (b) and Figure 3 (b). We will fo-
cus on the optimal discrete reconstruction filter design for
these two cases.
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Figure 4 (a) The Fourier transform of the original discrete
signal. (b) The Fourier transform of the signal with mini-
mum sampling rate for RS (c) The Fourier transform of the
signal with the same sampling rate for GS. (d) Up-sampling
filter specification for RS. (e) Up-sampling filter specifica-
tion for GS.

Assume we start with a RS sampled data at a sam-
pling rate that is much higher than the minimum re-
quirement. Its discrete Fourier transform is shown in
Figure 4 (a), where the two slopes -kmin and -kmax are de-
termined by the minimum and maximum depths of the
scene. If we down-sample the data with RS to its mini-
mum sampling rate, we get a new spectrum as in Figure 4
(b). If we down-sample it to the same rate with GS, we
have Figure 4 (c)1. Figure 4 (d) and (e) are up-sampling
filter specifications for (b) and (c), respectively. S, T and
P stand for stop-band, transition-band and pass-band,
respectively. We can observe that the transition-band of
the up-sampling filter for RS is very narrow for high fre-
quency components, but very wide for low frequency
components. On the other hand, the transition-band of
the filter for GS has constant width along all the frequen-
cies. This observation implies that RS is better for scenes
that has less high-frequency components, while GS is
better otherwise.

We use the eigenfilter approach [8][9] to design the
filters in Figure 4 (d) and (e). Let ( )tvD ωω , be the de-

sired frequency response in the pass-band, ( )tvH ωω , be

the filter we try to design. The Eigenfilter approach finds:
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1 Strictly speaking, Figure 4 (c) is a transformed version of the
original discrete Fourier transform. We perform this transform
so that we can compare the filter specifications of the two sam-
pling strategies. Please refer to [7] for details about such trans-
forms.
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, (2)

where E is the overall square error measured by the
weighted sum of the pass-band error EP and the stop-
band error ES; α and β are weighting constants which

control the accuracies of the approximation. In a normal
setup, we often have ( ) 1, =tvD ωω .

Eigenfilter is optimal for filter design itself, but it is
not necessarily optimal in terms of the reconstruction
error for a certain signal. Let the down-sampled signal
spectrum (such as Figure 4 (b) and (c)) be ( )tvX ωω , . We

try to find the optimal reconstruction filter through:
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where Er is the overall reconstruction error, r
PE and r

SE

are the reconstruction errors in pass-band and stop-band,
respectively. Equation (3) can still be solved through the
eigenfilter approach, as it differs from Equation (2) only
by a weighting function. Notice that the optimal filter is
related with the signal ( )tvX ωω , . In our experiments in

Section 4, we show that by using the Fourier transform of
a first order auto-regressive (AR-1) signal to model

( )tvX ωω , , we get better reconstruction than the regular

eigenfilter approach.

4. EXPERIMENTAL RESULTS

We show some experimental results on the two different
sampling approaches. In order to have full control on the
scenes and the cameras, we choose two scenes rendered
from 3D models with texture. These scenes are shown in
Figure 5, where scene (a) and (b) are named Duck and
Containers, respectively. We take the center horizontal
lines to construct the epipolar images (EPIs). Figure 5
(a1) and (b1) are snapshots of the scenes; (a2) and (b2)
are their EPIs; (a3) and (b3) are the Fourier transform of
the EPIs. Although occlusions can be observed in the
scenes, we ignore them in our analysis since they are not
significant in these two examples.

From the Fourier transform of the scenes in Figure 5,
we can find the corresponding sampling rate and compact
the spectrum to Figure 2 (b) and Figure 3 (b). One thou-
sand random images are then rendered for each scene
with different reconstruction filters. These images are
also synthesized through a 3D model rendering engine.
The difference between the synthesized images and the
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rendered images is used to measure the quality of the
sampling process. In our experiments, PSNR is used to
measure such differences.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 5 The testing scene EPIs and their Fourier trans-
forms. (a) The scene Duck. (b) The scene Containers.

Table I Rendered images qualities for different sampling
methods and reconstruction filters (PSNR: dB)

Duck Containers
RS, regular eigenfilter 33.99 20.44

RS, optimal reconstruction filter 35.89 21.81

GS, regular eigenfilter 35.68 22.04

GS, optimal reconstruction filter 36.06 22.21

RS, bilinear interpolation 36.10 21.67

The experimental results are shown in Table I. We
test the regular eigenfilter (REF) and the optimal recon-
struction filter (ORF) presented in Section 3 for both RS
and GS. To design the ORF, we model each replica of the
Fourier spectrum as the Fourier transform of an AR-1
signal with 9.0=ρ along vω , and constant along tω .

For example, the replica centered at 0== tv ωω is repre-

sented as:

( )
vjPtv

e
X ωρ

ωω
−

=
1

1
, (4)

where the subscript P simply means that it is valid only in
the pass-band. We also list depth-driven bilinear interpo-
lation for RS in Table I for comparison. Several conclu-
sions can be drawn from the above table. RS REF per-
forms much worse than GS REF. This is because the
specification for RS REF design has a zero transition-
band at high frequency components, which is hard to
design. In all cases, ORF is significantly better than de-
signing a general-purpose filter. This is because extra
knowledge was employed during the ORF design process.

With ORF, the difference between RS and GS becomes
very small, which again shows the power of ORF. Inter-
estingly, the simple approach that uses RS with bilinear
interpolation gives comparable performance as GS with
optimal filter for reconstruction. This is unexpected but
was verified in some other scenes we tested. Comparing
the two test scenes, there is more improvement by using
GS for the scene Containers, because Containers has
more high frequency components in its spectrum. This is
consistent with our analysis in Section 3.

5. DISCUSSION AND CONCLUSIONS

Real world scenes often has weak high frequency compo-
nents and strong low frequency components due to rea-
sons such as occlusions, thus RS is usually more suitable
than GS. Even for the Containers scene, the improvement
by using GS is minor, which cannot justify the increased
complexity in GS. Since GS is inconsistent with how the
images are taken, the required re-sampling may introduce
extra error. The rendering speed is another concern.
Unless we build a huge look-up table for the reconstruc-
tion filter and always do simple rounding when searching
for a filter value, bilinear interpolation is required to get
the filter values at arbitrary viewpoints. Even if the de-
signed reconstruction filter has the same size of support
as bilinear interpolation, the filter interpolation will slow
down the rendering by a factor of 4. Therefore, we con-
clude that in practice rectangular sampling is preferable
to non-rectangular sampling for lightfield.
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