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ABSTRACT

A biomechanical model constrained stochastic finite ele-
ment framework has been devel oped to jointly estimate my-
ocardium kinematics and material parameters from medical
image sequence. In an extended Kaman filter formulation,
we have observed that the augmented state error covariance
matrix must be carefully chosen in order to avoid diver-
gence. In this paper, we incorporate confidence measures
of the input imaging and imaging-derived data into the ini-
tialization of the state error covariance matrix. These con-
fidence measures come from the shape-matching process of
boundary points and from the local phase coherence of the
magnetic resonance velocity images. Experiments with two
types of imaging inputs have shown vastly improved filter-
ing efficiency and physiologically meaningful results.

1. INTRODUCTION

Myocardial ischemiacan beidentified and localized through
the detection of kinematic and mechanics abnormalities of
the left ventricle (LV) [1]. Efforts using optimal filtering
strategies for recovering cardiac motion and deformation
from medical image sequences have been reported [2, 3,
4]. Recently, we have proposed a stochastic finite element
framework for simultaneous estimation of myocardia kine-
matics functions and material model parameters [5]. With
the system dynamics equations of the heart, an extended
Kaman filter (EKF) has been used to linearize the aug-
mented equations and to provide joint estimation of kine-
matics and material parameters.

One key issue in EKF estimation arises from the fact
that al filter parameters, e.g. the initia augmented state
error covariance matrix and the process and measurement
noise covariance matrices, have to be known exactly [6].
Incorrect selection of these parameters will result in large
estimation errors or even divergence. In our actua imple-
mentation of the filter, the noise covariance is usually mea-
sured or estimated prior to the operation of the filter, while
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the determination of theinitial augmented state error covari-
ance is generally more difficult due to the complexity of the
cardiac dynamics, the incomplete noisy imaging/imaging-
derived data, and uncertainties of the constraining material
model parameters. In this paper, we present a weighting
technique for the initialization of the EKF state error co-
variance matrix that incorporates two confidence measures
on imaging and imaging-derived data. We will show ex-
perimentally that this strategy speeds up the convergence of
the estimation framework and provides more accurate and
physiologically sensible results.

2. BIOMECHANICALLY CONSTRAINED JOINT
ESTIMATION FRAMEWORK

The finite element method (FEM) is a numerical analysis
technique for obtaining approximate solutionsto awide va-
riety of engineering problems, especially continuum me-
chanicsones[7]. Thekey to our analysis framework is that
stochastic differential equations of LV dynamics are com-
bined with FEM to study the myocardium dynamic behav-
ior, including the uncertaintiesin their parameters and mea-
surements. The Delaunay triangulated finite element mesh
of the left ventricle is bounded by automatically segmented
endocardium and epicardium (see Fig.2). Specifically, an
isoparametric formulation defined in a natural coordinate
system is used, in which the interpolation of the element
coordinates and element displacements use the same basis
functions. For linear isotropic material, the governing equa-
tions of the LV dynamics are expressed in matrix form:

MU+ CU+KU =R (1)

where U is the displacement vector, R is the load vector,
mass matrix M is a function of myocardium density, and
stiffness matrix K is a function of the strain-stress matrix
that is associated with two material specific parameters, the
Young's modulus E and the Poisson’'s ratio v. The damp-
ing matrix C' is constructed by assuming Rayleigh damping
throughC' = aM + K.

The dynamics equations can then be re-written in state
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spaceform[5]:
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where the material parameter vector 6, the state vector z,
the system matrices A and B, and the control input w are:
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v(t) and e(t) arethe process and measurement noiseswhich
are white and zero mean (Efv(t)] = 0, E[v(t)v(s)'] =

Qu(D)des, Ele(t)] = 0, Ele(t)e(s)'] = Re(t)dis), y(t) is
the imaging/imaging-derived data, D is a known measure-
ment matrix, and 7" is the temporal sampling interval. The
unknown parameter vector 6 is treated as a part of an aug-
mented state vector, and the augmentation leads to a solu-
tion of the nonlinear filtering based on extended Kaman
filter:
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In our earlier implementation [5], the augmented state error
covariance sub-matrices P; (0) (state), P»(0) (state-material
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Fig. 1. Canine cardiac MR phase contrast images.

correlation), and P5(0) (material) are modeled as diagonal
matrices. P, (0) has separate uniform values for displace-
ment data and velocity data. The motivation to construct
non-uniform P; (0) sub-matrix comes from the observation
that thefilter performanceis very sensitive to the initial val-
ues. Because of the periodic nature of the cardiac dynam-
ics, we cyclically feed the updated imaging and imaging-
derived datainto thefiltering framework until reaching con-
vergence. Causal and improper selections of the initial val-
ues often destroy the integrity of the finite element mesh
during the filtering process. Further, we believe that any
prior or educated knowledge of the state and material pa-
rameters should enable us to achieve higher filtering effi-
ciency and more robust results.

3. DATA CONFIDENCE WEIGHTING

The state error covariance sub-matrix P; (0) can be expressed
as Py (0) = diag(Pyu(0), Py (0)) . Thefirst term on the
diagonal isthevariance of the displacements, andin our cur-
rent implementation it is related to confidence measures of
the shape-matched boundary point displacements. The sec-
ond term, the variance of the velocity, is related to the con-
fidence measures of the phase contrast velocity information
of MR imaging that are characterized by the local phase co-
herence values [8]. The initial values of P»(0) sub-matrix
are set to zeroes. And P5(0) is the covariance sub-matrix
of material parameters £ and v, whose values are propor-
tional to the expected errorsin the corresponding parameter
to ensure smooth convergence.

3.1. Confidence measures on shape-matched boundary
displacements

We had previously proposed astrategy for myocardial bound-
ary motion tracking based on locating and matching differ-
ential geometric landmarks [9]. Based on the hypothesis
the LV boundary contours deform as little as possible be-
tween successive temporal frames, bending energy measure
is used as the matching criterion to obtain the point corre-
spondences between contours:
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frame #1 frame#5 frame #9 frame #13
Fig. 2. Deforming finite element mesh of the left ventricle:
using boundary displacements (first row), and using bound-

ary displacements and mid-wall velocity (second row).

where k¢ (¢) is the curvature for a point ¢ in the first con-
tour, C the corresponding search region on the second con-
tour, and k(i) the curvature of a candidate point ¢ within
the search region. Among all the candidate points, the one
at & which yields the smallest bending energy is chosen as
the matched point, and the bending energy value indicates
the goodness m 4 (§) = epend(, £) of the match.

Further, the bending energy measuresfor all other points
within the search region are also recorded as the basis to
measure the uniqueness of the matching choice. Ideally, the
bending energy value of the chosen point should be an out-
lier (much smaller value) compared to the values of the rest
of the candidate points. If we denote the mean value of the
bending energy measures of al the points inside the search
window except the chosen point as é;.,,¢ and the standard
deviation as o4, We define the uniqueness measure of the
match as:
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Obvioudy for both goodness and unique measures, the
smaller the values the more reliable the match. Combining
these two together, we arrive at a confidence measure for the
matched second contour point £ of the first contour point ¢:

1 1
T kiyg + ko gmg(€) ki + k2umu(€)
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where k1 g, k2 g, k1 4, and ko, are normalizing constants
such that the confidence measures for all point matches be-
tween contours are in the range of 0 to 1.

This process yields a set of shape-based, best-matched
displacement vectors for each pair of contours, and each
vector has an associated confidence measure. Elements of
the displacement error sub-matrix Py (0) will be weighted

by (1 = ¢(£))-
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Fig. 3. Strain estimates between end-diastole and end-
systole: using boundary displacements (first row), and us-
ing boundary displacements and mid-wall velocity (second
row).

3.2. Confidence measures on mid-wall MR phase con-
trast velocity

Velocity and intensity images are acquired using the phase
contrast cine magnetic resonance imaging. This imaging
technique relies on the fact that a uniform motion of tis-
sue in the presence of a magnetic field gradient produces a
changein the MR signal phasethat is proportional to veloc-
ity [1Q]. In principle, the instantaneous Euclidian velocities
for the moving tissue can be easily obtained for each pixel
in an image acquisition. However, because of the relatively
large size of the imaging region-of-interest, current phase
contrast velocity estimates near the endocardial and epicar-
dial boundaries are extremely noisy, and reliable motion in-
formation is only available within the mid-wall region.

Local phase coherence (LPC) [8] is used to assess the
reliability of the velocity dataat mid-wall. For velocity vec-
tor v, at s and velocity vector v; of its neighbor at i, we
definethe LPC(v;) to be:

flos,vi) = <ws,vi > [||vs]] [|vil] 9)
8

LPC(v,) = liﬁ lz f(vs,v;) + 8 (10)
i=1

wherethe summation istaken over the eight neighbors. Since
f(vs,v;) iswithin [—1, 1], the LPC value is thus within the
range of [0, 1].

In ideal situation, we should expect high LPC values
at the velocity coherent regions of mid-wall myocardium.
Any deviation from high LPC indicates poor quality of the
velocity information. Elements of the velocity error sub-
matrix P (0) now will beweighted by (1 — LPC(v,)).
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Fig. 4. Estimated material parameters and the TTC-stained
post mortem myocardium. Young's modulus (first row): us-
ing boundary displacements (@), and using boundary dis-
placements and mid-wall velocity (b). Poisson’sratio (sec-
ond row): using boundary displacements (@), and using
boundary displacements and mid-wall velocity (b).

4. EXPERIMENTS

Sixteen sets of MR velocity and magnitude images are ac-
quired over the heart cycle [5]. Fig.1 showsthe MR images
and LPC map at end-diastole (ED). Myocardial boundaries
are extracted using velocity constrained level set strategy,
and boundary displacements between consecutive frames
are detected based on | ocating and matching geometric land-
marks and alocal coherent smoothness model [9]. The LV

is modeled as an isotropic linear elastic material, and rep-
resented by linear finite element mesh constructed from the
Delaunay triangulation of the sampled points. Initial mate-

rial parametersfor the myocardium are set to 75,000 Pascal

for Young's modulus and 0.47 for Poisson’s ratio, and the
myocardium mass density is set to 1.5 gram/mm3. A data
confidence measure weighted extended Kaman filter isem-

ployed to estimate tissue deformation and material param-

eters, by 1). using the shape-matched boundary displace-

ments only, and 2). using both the mid-wall phase contrast
velocity and boundary displacements.

Fig. 2 shows examples of the recovered LV mesh at
multiple time frames. Fig. 3 shows the cardiac specific ra-
dial, circumferential, and shear strain distributions between
ED and end-systole (ES). The final converged estimates of

Young's modulus and Poisson’s ratio are shown in Fig.4,

aong with picture of the gold-standard TTC-stained post

mortem myocardium. Please note that while using both dis-

placements and velocity data, thereis very good agreement

between our estimated infarcted ti ssues (stiffer Young's mod-
ulus and close to incompressible Poisson’s ratio) and the
highlighted histological results from TTC-staining.

5. CONCLUSIONS

To improve the filter performance, confidence measures of
the imaging/imaging-derived measurement data are used in
constructing the augmented state error covariance matrix.
This data confidence measure weighted extended Kalman
filter framework adopts temporal periodic characteristics of
the heart motion as well as the mechanical modeling of the
myaocardium to estimate the kinematics and material param-
eters smultaneoudly. Initial experiments with real imaging
data have been performed, and the results are in high agree-
ment with the histological results of the same animal.
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