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ABSTRACT

This paper presents the new Fast Optimal Lower Rank Ten-
sor Approximation (FOLRTA) optimal method for lower
rank-

���������	���
���
�
�
tensor approximation applied for mul-

tidimensional signal processing. It is founded on a new ap-
proach which consists of considering multidimensional data
as global tensors instead of splitting them into matrices or
vectors for later classical second order array processing. Its
basic principle is to project the initial data tensor into the
signal subspace, in each consecutive mode. The developed
method is the first analytical solution to the Tucker3 tensor
decomposition. We show in a simple example of noise re-
duction of a color image the efficiency of this method. It
can also be applied in Seismic, Acoustics or Multimedia.

1. INTRODUCTION

Multidimensional modelisation of a physical problem can
be used in a large range of fields so diverse as chemometric,
psychology, data analysis or signal processing [1]. In sig-
nal processing, tensors are built on vector spaces associated
to physical quantities such as length, width, height, time,
color chanel etc... . Each mode of the tensor is associated to
a physical quantity. For example, in image processing, color
images can be modelled as three-dimensional tensors: two
dimensions for lines and columns, and one dimension for
the color map. In multimedia signal processing, a sequence
of color images can be modelled by a four-dimensional ten-
sor: three modes correspond to color images, and the fourth
mode corresponds to the time. In seismic and underwater
acoustics a three-dimensional modelisation of data can be
adopted as well: one mode is associated to spatial sensors,
one mode to the time and one mode to the polarization com-
ponents of the wave.

So far, most of the processings applied on multidimen-
sional data amount to split these data into observation vec-
tors or matrices in order to apply the classical second order
array processing methods. These methods usually involve
first or second order statistics, and more recently higher or-
der statistics [2]. Then, the processed vectors or matrices
are merged to retrieve the initial tensor.

The splitting of multidimensional data reduces inevitably
the quantity of information related to the global tensor as
we loose the possibility of studying the relations between
components of different slices of data.

In this paper, we propose a new approach in which multi-
dimensional data are considered globally as indivisible ten-
sors in order to potentially dispose of more information than
what we could obtain by splitting the data. This new con-
cept leads naturally to use tensorial and multilinear algebra
and to elaborate new methods for tensor decomposition and
approximation that generalizes the matrix Singular Value
Decomposition. We extend to tensor algebra the decom-
position of data into two orthogonal subspaces: the noise
subspace and the signal subspace. We determine in each
mode the noise subspace and the signal subspace, and make
the projection of the initial tensor on the signal subspaces.
This method is equivalent to find the best lower-rank tensor
approximation of the initial tensor.

The developed method is the first analytical solution to
the Tucker3 tensor decomposition recently proposed in [3].

In the following, section 2 gives a brief recall of multi-
linear algebra and tensor decomposition technics. In sec-
tion 3, we present an original method for multidimensional
signal processing based on lower rank-(

�����	���	�	�����
) ten-

sor approximation. This method consists in finding, in each
mode of the tensor, the noise and signal subspaces, taking
into account the information contained in all other modes.
Finally, in section 4 we apply this new method for the first
time to image processing and propose some results for sev-
eral color images.
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2. RECALL OF MULTILIEAR ALGEBRA

In Physics, a tensor of order N can be considered as a multi-
dimensional array which entries are accesed via N indexes.
We note it ������������������� �"! , where each element is # $ � ����� $ ! .

The most frequently used model of tensor decomposition
is referenced as Tucker3 model [4]. It is the extension of
the Singular Value Decomposition in which any %'&�( -order
tensor ���)��� � �*������� � ! can be expressed as:

�,+.-0/ �2143 �65 /87 143 7 5:9�9	9 / �;143 ��5
(1)

where
1 3�< 5

are unitary = < />= < -matrice, -.�)�?� � �*�����@�A� ! is
the core tensor and / < is the B -mode product, all of which
properties can be found in [5]. Given �C�D�E� � �*������� � !
and a matrix

1 ���EF
GH�A�IG , JD+K�D/ < 1
is a tensor of��� � �*����� �LGNM � �AF	G:� �LG�O � �*�����P� � ! , which entries are given by:

Q $ � ����� $ GNM �SR G $ G�O � ����� $ ! + �LGT
$ GVU � #W$ � ����� $ GXM � $ G $ G�O � ����� $ !ZYAR G $ G

�
(2)

Let’s give a brief recall of tensor rank definitions which
can be found in [6, 5] and that will be used in the following.
The B -rank of tensor �[�\�?� � �*������� � ! , noted as Rankk

� � �
,

is the dimension of its B -mode vector space ] < composed
of the = < -dimensional vectors obtained from � by varying
index ^ < and keeping the other indexes fixed. � is called
a rank-(

�����	���	�	�����
) tensor if Rankk

� � � + �`_
whatevera +cb �	�	���
� % .

Given a real %�&�( -order tensor � �d�?�"����������� �"! , the
rank-(

� � ���	���	��� �
) tensor approximation problem consists

in finding the rank-(
� � �	���	�
��� �

) tensor J , with
� <fe= < �hg Bi�;j@b � %lk , which minimizes, in a Least Square sens,

its quadratic Frobenius distance with tensor � : mn�poqJ�m 7 �
So far, the classical methods for lower-rank tensor ap-

proximation have been based on Alternative Least Square
(ALS) algorithms and the Higher Order Power Method
(HOPM)[7, 5, 8, 6]. They are numerical iterative methods
which need expensive computational load and which per-
formances are considerably dependent on the initialization
values, the number of iterations and the incremental step
value.

Nevertheless, the recently developed Fast Optimal
Lower-Rank Tensor Approximation (FOLRTA) algorithm
gives an exact analytical solution to rank-

��� � �	�	���	��� � �
ten-

sor approximation [3].

3. PROPOSED APPROACH

Let’s suppose we dispose of a multidimensional data tensor� , superposition of signal and noise, recorded from phys-
ical phenomena. Let ] < be the vector space of dimension= < , associated to the B -mode of tensor � . ] < is the superpo-
sition of two orthogonal subspaces: the signal subspace ] �<

of dimension
� < , and the noise subspace ] 7< of dimension= < o � < , such that ] < +r] �<ts ] 7< .

The goal of this approach is to determine the signal sub-
tensor given by the best rank-(

� � �	���	�	��� �
) tensor approxi-

mation of � , thanks to consecutive projections of � on the
signal subspaces, in every mode. This can be done thanks to
the classical assumption that the signal energy is larger than
the noise energy, in every mode.

We present, in a first part, FOLRTA algorithm which
gives the best lower-rank tensor approximation. Then, we
make a link between this mathematical tool and signal pro-
cessing. Finally, we give an implementation of this ap-
proach when we only dispose of one realisation of the data
tensor.

3.1. FOLRTA algorithm

Given any tensor � � �?� � �*������� � ! , lower rank-
(
�`�X�	�	���	�����

) tensor approximation of � consists in find-
ing rank-(

�t���	�	���
���
�
) tensor Ju�[� �����*�����@�A�"! that min-

imizes mn�povJ�m 7 . According to [5], J can be expressed
with Tucker3 model by:

Jw+yxz/ �21 3 �65 /87 1 3 7 5 9�9	9 / �;1 3 ��5 �
(3)

with
1 3P< 5 � St

� = < ��� < � the Stiefel matrix manifold, such
that the column vectors of

1 3�< 5
, B{+|b �	���	�
� % , are or-

thonormal, and x}�~�?���	�*�����@�A�h! being the core tensor.
As given in [5, 8], this problem is equivalent to maximizem�xlm 7 , with:

x�+r��/ �21 3 �65�� 9	9�9 / �w1 3 ��5S� �
(4)

with respect to matrices
1 3P< 5 � St

� = < ��� < � , for Br+Db to% .
The optimal analytical solution is given by [3]. The col-

umn vectors of matrices
1 3�< 5

are found independently in
every B -mode of tensor � . They consist of the

� < eigen-
vectors associated to the

� < largest eigenvalues of symetric,
defined and positive matrix � < which generic term is:

# <$ R +����t$ G U $�� �t$ G U R�� � (5)

where �t$ G U $ and �t$ G U R are
� %�o�b � &�( -order tensor from�������*������� � GXM ��� � G�O �	�*�����@�A�"! obtained by fixing ^ < , the B�&�(

mode index of tensor � , respectively to ^ and � . The ten-
sor scalar product related to Frobenius distance of two com-
plex %�&�( -order tensors � and J��w��� � ��������� � ! is given by�I��� J � +�� � �$ � U �

9	9	9 � � !$ ! U � #A�$ �n����� $ ! Q $ ������� $ ! .
Moreover, the best lower rank-(

� � �	�	���	��� �
) tensor ap-

proximation of � is given by:

Jw+0��/ ��� 3 �65 / 7 � 3 7 5 9�9	9 / ��� 3 ��5 �
(6)

with
� 3�< 5 + 1 3�< 5 1 3�< 5��

, the orthogonal projector on the
subspace generated by the

� < = < -dimensional column vec-
tors of

1 3P< 5
, in the B -mode initial vector space.
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3.2. Link with signal processing

Let’s remark that matrix � < which generic term is given
by (5) is the cross-correlation matrix of the

� %,o�b � &�( -order
subtensors in a particular B -mode. These subtensors contain
the whole information on this B -mode which is comprised
in all the other modes.

Moreover, in each mode,
� < + 1 3�< 5 1 3�< 5��

, with
1 3�< 5 �

St
� = < ��� < � the optimal matrix found in the best lower rank-

(
� � ���	���	��� �

) tensor approximation of � is the orthogonal
projector from the initial space ] < to the signal space ] �< .

3.3. Implementation

Let’s consider the case when we only dispose of one realisa-
tion of the multidimensional data tensor � . The estimation
of matrix � < , which generic term is given by (5), is done as
follow: � # <$ R +.]c�������$ � ���R��	� � (7)

���_ �[��� � ���������A��GXM � � ��G�O � ���������A� ! is a
� % o�b � &�( -order

subtensor extracted from �4$ G U _ . Its size is ¡ � / ���	� /¡ <£¢ � /r¡ <N¤ � / �	��� /r¡ � , with ¡�¥§¦¨=
¥ whatever© ��j�b � %lk�o�ª�B�« . Its position into ��$ G U _ is defined by
vector ¬ +~j ¬ �N�	���	�
� ¬ � k®­p�.� � , with ¬ < �pj@b � = < k , what-
ever B�+¯b �	�	���
� % . ] �I�

is the mathematical expectation
approximed by:

] ��� ���$ � �
�R��	� + b° ±T² U � � �
�$ � ���Rh�
�

(8)

with
�

the total number of positions of subtensor � chosen
within tensor �t$ G U _ .

4. SIMULATION AND RESULTS

We apply this original FOLRTA algorithm for the first time
to image processing. The main goal of the following ma-
nipulations is the noise reduction of color images.

In order to validate the method, we first test this algorithm
on a simple grey scale image considered as a ³ <V´ -order ten-
sor without noise. Figure 1 shows that the image is totally
retrieved by the lower rank tensor approximation.

On figure 2(a), we consider a more elaborated signal
composed by a color image �µ���E¶ � 7 � ·�¸6¹N� · of 512 lines,
384 columns and 3 colors. We add to this image a gaussian
noise such that the noisy image J , represented figure 2(b),
is: Jw+r�rºi» � ³?¼�³V½¾½?¼�¿ � (9)

with ¿[�,��¶ � 7 � ·�¸6¹N� · representing a noise sampled from
a three dimensional centered gaussian density of variance
1, and assuming that each color intensity is comprised inj » � ³¾½V½Àk . In a first approach, we process separately the lower
rank-(25,25) approximation of each color chanel (R-G-B)

(a) (b)

Fig. 1. Validation of the algorithm on a simple grey scaleb�½VÁ`/lb�»Ab image. (a) initial image without noise. (b) image
retrieval after lower-rank tensor approximation.

(a) (b)

(c) (d)

Fig. 2. Lower-Rank Tensor Approximation applied on a½ bÀ³>/qÁ¾ÂNÃ color image. (a) initial color image. (b) noisy
image with noise from (eq. 9). (c) color image obtained by
processing separately lower rank-(25,25) approximation of
each color chanel (R-G-B) of image (b) with FOLRTA algo-
rithm. (d) color image obtained after lower rank-(25,25,3)
approximation of image (b), with FOLRTA algorithm.

of noisy image figure 2(b) using FOLRTA algorithm, and
show the result in image figure 2(c). Then, we process lower
rank-(25,25,3) approximation of image 2(b), with FOLRTA
algorithm, which result is given figure 2(d). The quality,
in terms of noise reduction, of image 2(d) is clearly much
better than one of image 2(c), which brievely shows the ef-
ficency of considering multidimensional data as global ten-
sors instead of splitting them into matrices or vectors for
processings. Moreover, the quality of noise reduction ob-
tained with FOLRTA algorithm is good as most of the noise
has disappeared in image 2(d).

Nevertheless, FOLRTA algorithm presents some limita-
tion presented in figure 3. The noise added to the initial im-
age is the same as (9). We process lower rank-(30,30,3) ap-
proximation of image 3(b), with FOLRTA algorithm, which
result is given figure 3(b). In this case, the final image is
slightly destorted and blured by the lower-rank approxima-
tion. However, the red and yelow diagonal waves contained
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(a) (b)

(c)

Fig. 3. Lower-Rank Tensor Approximation applied on a½ bÀ³�/ÄÁVÂVÃ color image. (a) initial color image. (b) noisy
image with noise from (eq. 9). (c) color image obtained
after lower rank-(30,30,3) approximation of image (b), with
FOLRTA algorithm.

in the image are well retrieved.

5. CONCLUSION

The Fast Optimal Lower-Rank Tensor Approximation is a
new original method based on multilinear algebra for mul-
tidimensional signal processing, noise reduction or Blind
Source Separation. It is founded on a new approach which
consists of considering multidimensional data as global ten-
sors instead of splitting them into matrices or vectors for
later processing. Its basic principle is to project the ini-
tial data tensor on the signal subspace, for each consecutive
mode. We show in a simple example of noise reduction of a
color image the efficiency of this method.

This novel FOLRTA method can also be applied, not
only in image processing, but in Seismic and Acoustics for
wave separation, and Multimedia with new perspectives for
data compression, for which multidimensional modelisation
brings more infomation than what we could get by the clas-
sical array processing modelisations and methods. Some
more studies are in progress to improve Blind Source Sepa-
ration especially in the seismic field.
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