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ABSTRACT

This paper shows how the Fisher information matrix of a
given two-dimensional (2D) data set can be expressed us-
ing the matrices that determine the 2D system that generates
the data set. For uniformly sampled data it is shown how
the Fisher information matrix can be expressed through the
solutions of Lyapunov equations. The novel techniques are
demonstrated with an example arising from nuclear mag-
netic resonance spectroscopy.

1. INTRODUCTION

Data that can be considered to be generated by a two-
dimensional (2D) linear continuous system appears in many
areas of applications. For example, in nuclear magnetic res-
onance (NMR) spectroscopy it can be shown ( [1]) that the
data of a so-called 2D NMR experiment typically has the
form

y(t1, t2) = C1e
A11t1A12e

A22t2B2, t1, t2 ≥ 0, (1)

where A11, A12, A22, C1, B2 are matrices of compatible
sizes. The fundamental problem in NMR spectroscopy is
that the system matrices are dependent on parameters (e.g.
the resonant frequencies of the magnet spins) which need to
be estimated through the experiment.

Estimation of parameters that determine dynamic data
is a frequently encountered problem in many areas of ap-
plications. The question therefore naturally arises as to the
accuracy with which these parameters can be estimated. The
Cramer Rao lower bound (CRLB) gives a lower bound for
the covariance of the parameter estimates of an unbiased es-
timation procedure for a given data set [2, 3]. The CRLB is
in fact typically calculated as the inverse of a matrix called
the Fisher information matrix. The relevance of this result
is not only to evaluate a particular estimation procedure but
can also give guidance for an appropriate design of an ex-
periment to collect data (see e.g. [4]).

Various methods have been suggested for the computa-
tion of the CRLB for the parameter estimation problem of
2D undamped exponential signals with additive noise [5].
However, to our best knowledge, a closed form expression
for the CRLB for the parameter estimation problem for 2D

damped exponential signals is not available in the litera-
ture. In [4] the Fisher information matrix was derived for
a concrete problem arising in NMR spectroscopy. How-
ever the approach taken there uses the ‘hand calculation’ to
derive the analytical expression, which is time-consuming
and cumbersome. Recently, a systematic investigation of
the CRLB or Fisher information matrix for the case of one-
dimensional (1D) deterministic dynamic systems corrupted
by measurement noise is presented in [6]. In this paper, we
generalize the results of [6] to 2D data described by (1), us-
ing 2D system theoretic methods. This generalization is,
however, not a straightforward extension of the results in [6]
due to the significantly more intricate structure of 2D sys-
tems.

To derive a systematic approach to data sets described
in (1) we consider a 2D complex single-input single-output
continuous system with a separable denominator using
Roesser’s model (RM)

[ ∂
∂t1

xh
θ (t1, t2)

∂
∂t2

xv
θ(t1, t2)

]
=

[
A11 A12

0 A22

] [
xh

θ (t1, t2)
xv

θ(t1, t2)

]

+
[

B1

B2

]
u(t1, t2),

yθ(t1, t2) =
[

C1 C2

] [
xh

θ (t1, t2)
xv

θ(t1, t2)

]
,

where t1 ≥ 0, t2 ≥ 0, A11, A12, A22, B1, B2,
C1 and C2 are complex matrices of appropriate dimen-
sions depending on the unknown parameter vectorΘ :=[

θ1 θ2 . . . θK

]T
, xh

θ (t1, t2), andxv
θ(t1, t2) are hor-

izontal and vertical state vectors respectively,u(t1, t2) is
the input, and ∂

∂tj
denotes partial derivative with respect to

tj (j = 1, 2). The boundary conditions are given by

xh
θ (0, t2), xv

θ(t1, 0), t1 ≥ 0, t2 ≥ 0.

In the following lemma we characterize the input-output
description of such a system. See [7] for a proof.

Lemma 1.1 The output of the above 2D continuous
separable-denominator system is given by

yθ(t1, t2) = vθ(t1, t2) + qθ(t1, t2), t1 ≥ 0, t2 ≥ 0.
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Here vθ(t1, t2) is the system response due to non-zero
boundary conditions andqθ(t1, t2) is the system response
due to system input, which are given by

vθ(t1, t2) = C1e
A11t1xh

θ (0, t2) + C2e
A22t2xv

θ(t1, 0)

+
∫ t1

0

C1e
A11(t1−τ1)A12e

A22t2xv
θ(τ1, 0)dτ1,

and

qθ(t1, t2) =
∫ t1

0

C1e
A11(t1−τ1)B1u(τ1, t2)dτ1 +

∫ t2

0

C2

· eA22(t2−τ2)B2u(t1, τ2)dτ2 +
∫ t1

0

∫ t2

0

C1

· eA11(t1−τ1)A12e
A22(t2−τ2)B2u(τ1, τ2)dτ1dτ2.

Note that the data model that motivated our study in (1)
can be seen to be the output of such a system if we set
u(t1, t2) = δ(t1, t2), which is the 2D unit impulse func-
tion, xv

θ(t1, 0) = 0, xh
θ (0, t2) = 0, B1 = 0 andC2 = 0.

For simplicity, the remainder of this paper is based on this
assumption for the data model in (1).

Assume that we have acquired noise corrupted samples
sθ(n, m) (n = 0, 1, . . . , N−1; m = 0, 1, . . . , M−1) of the
measured output of a 2D continuous separable-denominator
system at various points(t1n, t2m), i.e.

sθ(n,m) = yθ(t1n, t2m) + w(n,m),

where yθ(t1n, t2m) is the noise free data acquired at the
sampling point(t1n, t2m) andw(n,m) is the measurement
noise component assumed to be complex Gaussian with zero
mean. The real and imaginary parts ofw(n,m) are assumed
to have varianceσ2

n,m, and to be independent/uncorrelated,
i.e. var(Re{w(n,m)})= var(Im{w(n, m)}) = σ2

n,m and
E(Re{w(n,m)}Im{w(n,m)})= 0.

By the Cramer Rao Lower bound, any unbiased estimate
Θ̂ of Θ has a variance (provided certain regularity conditions
hold) such that

var(Θ̂) ≥ I−1(Θ),

wherevar(Θ̂) ≥ I−1(Θ) is interpreted as meaning that the
matrix(var(Θ̂)−I−1(Θ)) is positive semidefinite [2]. Here
I(Θ) is the Fisher information matrix given by

[I(Θ)]st = −E

(
∂2ln(p(S; Θ))

∂θs∂θt

)
, 1 ≤ s, t ≤ K,

whereΘ is the unknownK × 1 parameter vector,S is the
measured data set,p(S; Θ) is the probability density func-
tion of the measurements andE(·) is the expected value with
respect to the underlying probability measure.

With the above background, the next section discusses
the derivation of the Fisher information matrix for the 2D
data set given by (1). For the special but important case of
uniformly sampled data we show in Section 3 that the com-
putation of the Fisher information matrix can be reduced to

the computation of solutions to certain Lyapunov equations.
Proofs can be found in [7]. An NMR example is given in
Section 4.

We denote bydiag (M1,M2, . . . , Mr) the block diago-
nal matrix whose diagonal block entries areM1,M2, . . . ,Mr,
and all other block entries are zero matrices.

2. FISHER INFORMATION MATRIX

With the Gaussian noise model discussed in Section 1 the
probability density function is given by

p(S; Θ) =ΠN−1
n=0 ΠM−1

m=0

1√
2πσ2

n,m

· e−
1

2σ2
n,m

[Re{sθ(n,m)}−Re{yθ(t1n,t2m)}]2

· e−
1

2σ2
n,m

[Im{sθ(n,m)}−Im{yθ(t1n,t2m)}]2
.

In the following lemma we are going to collect some basic
results on the Fisher information matrix adapted to the par-
ticular data model that we consider (see e.g. [2]).

Lemma 2.1 1.) For 1 ≤ s, t ≤ K

[I(Θ)]st =− E

(
∂2 ln(p(S; Θ))

∂θs∂θt

)
=

N−1∑
n=0

M−1∑
m=0

1
σ2

n,m

· Re
{

∂yθ(t1n, t2m)
∂θs

∂y∗θ(t1n, t2m)
∂θt

}
,

where(·)∗ denotes complex conjugate.

2.) Let

Dyθ(t1n,t2m) :=




∂yθ(t1n,t2m)
∂θ1

∂yθ(t1n,t2m)
∂θ2
...

∂yθ(t1n,t2m)
∂θK




.

Then

I(Θ) =
N−1∑
n=0

M−1∑
m=0

1
σ2

n,m

Re
{

Dyθ(t1n,t2m)D
H
yθ(t1n,t2m)

}
,

where(·)H denotes complex conjugate transpose.

In order to calculate the Fisher information matrix it is
necessary to compute the derivative∂yθ(t1n,t2m)

∂θs
of the out-

put with respect to the elementθs of the parameter vectorΘ,
s = 1, . . . , K.

Lemma 2.2 For the 2D continuous separable-denominator
system with impulse inputu(t1, t2) = δ(t1, t2), andB1 = 0,
C2 = 0, xv

θ(t1, 0) = 0, xh
θ (0, t2) = 0,

∂yθ(t1, t2)
∂θs

= ∂sC1e
∂sA11t1∂sA12e

∂sA22t2∂sB2.
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Here

∂sA11 :=
[

A11 0
∂A11
∂θs

A11

]
, ∂sA12 :=

[
A12 0
∂A12
∂θs

A12

]
,

∂sA22 :=
[

A22 0
∂A22
∂θs

A22

]
, ∂sB2 :=

[
B2
∂B2
∂θs

]
,

∂sC1 :=
[

∂C1
∂θs

C1

]
.

In the following theorem we summarize the previous re-
sults and state the general expression for the Fisher infor-
mation matrix for the data set corresponding to the output of
the 2D continuous separable-denominator system.

Theorem 2.1 Consider the augmented derivative system
given by

DA11 := diag (∂1A11, ∂2A11, . . . , ∂KA11),

DA12 := diag (∂1A12, ∂2A12, . . . , ∂KA12),

DA22 := diag (∂1A22, ∂2A22, . . . , ∂KA22),

DB2 :=




∂1B2

∂2B2

...
∂KB2


 ,

DC1 := diag (∂1C1, ∂2C1, . . . , ∂KC1).

Assume that the 2D system is the same as that in
Lemma 2.2. We have

Dyθ(t1,t2) = DC1e
DA11 t1DA12e

DA22 t2DB2 .

For the 2D data set sampled at(t1n, t2m) (n =
0, 1, . . . , N − 1;m = 0, 1, . . . , M − 1) with noise variance
σ2

n,m =: σ2, the Fisher information matrix is given by

I(Θ) =
1
σ2

N−1∑
n=0

M−1∑
m=0

Re
{

Dyθ(t1n,t2m)D
H
yθ(t1n,t2m)

}
.

(2)

3. FISHER INFORMATION MATRIX FOR
UNIFORMLY SAMPLED 2D DATA

Although Theorem 2.1 in the previous section is valid for
both uniform and nonuniform sampling schemes, it is com-
putationally rather inefficient to directly compute the 2D
summations in (2), particularly in the case when the num-
ber of samples is large. In this section, we develop an ef-
ficient method for calculating the Fisher information ma-
trix for 2D data generated by uniformly sampling the out-
put of the 2D continuous separable-denominator system in
Lemma 2.2. To this end, it is assumed that all the eigenval-
ues ofeA11T1 andeA22T2 are in the open unit disk or equiv-
alently the eigenvalues ofA11 andA22 are in the open half

plane, whereT1 andT2 are the sampling intervals for the
variablest1 and t2 respectively. Theorem 2.1 can then be
simplified significantly with the Lyapunov approach. For
convenience of exposition, we denoteAd1 := eDA11T1 and
Ad2 := eDA22T2 .

Theorem 3.1 Consider the data model of Theorem 2.1 and
assume that the signal is uniformly sampled with sampling
intervalsT1 for the variablet1 andT2 for t2, i.e., att1n =
nT1, n = 0, 1, . . . , N −1; t2m = mT2,m = 0, 1, . . . , M −
1. Moreover, assume that all the eigenvalues ofA11 andA22

are in the open left half plane. Then the Fisher information
matrix is given by

I(Θ) =
1
σ2

Re
{
DC1P1D

H
C1

}
,

whereP1 is solved as follows. ObtainP2 as the unique so-
lution to the following Lyapunov equation

Ad2P2A
H
d2 − P2 = −DB2D

H
B2

+ AM
d2DB2D

H
B2

(AM
d2)

H ,

and then getP1 as the unique solution to the following Lya-
punov equation

Ad1P1A
H
d1−P1 = −DA12P2D

H
A12

+AN
d1DA12P2D

H
A12

(AN
d1)

H
.

In the case that there are an infinite number of equidis-
tant samples in either of the variablet1, t2 or both, Theo-
rem 3.1 can be simplified to the following two corollaries.

Corollary 3.1 Assume that the 2D system is the same as
that in Theorem 3.1, except that there are an infinite num-
ber of equidistance samples in thet1 variable, i.e. t1n =
nT1, n = 0, 1, . . . ,∞. Then the Fisher information matrix
is given by

I(Θ) =
1
σ2

Re
{
DC1P1D

H
C1

}
,

whereP1 is solved as follows. ObtainP2 as the unique so-
lution to the following Lyapunov equation

Ad2P2A
H
d2 − P2 = −DB2D

H
B2

+ AM
d2DB2D

H
B2

(AM
d2)

H ,

and then getP1 as the unique solution to the following Lya-
punov equation

Ad1P1A
H
d1 − P1 = −DA12P2D

H
A12

.

Corollary 3.2 Assume that the 2D system is the same as
that in Theorem 3.1, except that an infinite number of
equidistant samples are acquired in both thet1 andt2 vari-
ables, i.e.,t1n = nT1, n = 0, 1, . . . ,∞; t2m = mT2, m =
0, 1, . . . ,∞. Then the Fisher information matrix is given by

I(Θ) =
1
σ2

Re
{
DC1P1D

H
C1

}
,
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whereP1 can be solved as follows. First obtainP2 as the
unique solution to the Lyapunov equation

Ad2P2A
H
d2 − P2 = −DB2D

H
B2

,

then getP1 as the unique solution to the Lyapunov equation

Ad1P1A
H
d1 − P1 = −DA12P2D

H
A12

.

4. EXAMPLE

Consider the simulated 2D NMR data having the form

yθ(t1, t2) =
2∑

k=1

2∑

l=1

ckle
(r1k+iw1k)t1+(r2l+iw2l)t2+iφkl

where the parameter vector is given by

Θ = [ c11, c12, c21, c22, r11, r12, r21, r22, ω11, ω12,

ω21, ω22, φ11, φ12, φ21, φ22 ]T .

The above simulated 2D NMR data can be considered as
the output of a 2D continuous separable-denominator sys-
tem with a state-space realization given by

A11 =
[

r11 + iω11 0
0 r12 + iω12

]
, C1 =

[
1 1

]
,

A12 =
[

c11e
iφ11 c12e

iφ12

c21e
iφ21 c22e

iφ22

]
, C2 = 0,

A22 =
[

r21 + iω21 0
0 r22 + iω22

]
, B1 = 0, B2 =

[
1
1

]

where the input and initial conditions are given by

u(t1, t2) = δ(t1, t2), xh
θ (0, t2) = 0, xv

θ(t1, 0) = 0.

we fix the values of the parameter vectorΘ as

[ 0.15, 0.22, 0.12, 0.13, −0.1, −0.35, −0.15, −0.45,

1.445, 2.136, 2.702, 0.88, 0.683, 1.366, 2.4167, 0.982 ]T.

To apply the methods in Section 3, the first step is the calcu-
lation of the derivative system determined byDA11 , DA12 ,
DA22 , DC1 andDB2 in Theorem 2.1. Detailed calculation
is omitted here but can be found in [7]. Next, we obtain the
CRLB for the simulated NMR data with additive Gaussian
noise using the method of [4] and the new methods proposed
in this paper. From Table 1, it can be seen that the values in
columns 1 and 2 are indeed very close (the differences are
caused by numerical errors only), while there are some small
differences between the values in column 1 and column 3 (or
4). In fact, it is easy to see that Corollary 3.1 gives expres-
sions for the Fisher information matrix associated with the
asymptotic CRLB for an infinite number of samples fort1
while Corollary 3.2 gives expressions for the Fisher infor-
mation matrix associated with the asymptotic CRLB for an

infinite number of samples for botht1 andt2, as verified by
this example. The significance is that the new methods are
computationally much more efficient than the method of [4].
For this example as well as many other simulations we have
conducted, the computational time using the method of [4]
is at least 100 times more than that using the new methods
for the same PC under the same conditions.

Table 1. CRLB for Different Methods withT1 = 0.015,
T2 = 1.54, N = 2048, M = 16

Θ Method of [4] Theorem 3.1 Corollary 3.1 Corollary 3.2
c11 5.1551e-005 5.1559e-005 5.0550e-005 4.9898e-005
c12 7.9816e-005 7.9828e-005 7.7776e-005 7.7365e-005
c21 1.1731e-004 1.1733e-004 1.1645e-004 1.1609e-004
c22 2.0245e-004 2.0249e-004 1.9971e-004 1.9956e-004
r11 1.1433e-005 1.1435e-005 1.0231e-005 1.0228e-005
r12 1.1673e-003 1.1674e-003 1.1568e-003 1.1563e-003
r21 7.4231e-005 7.4236e-005 7.4050e-005 7.0916e-005
r22 4.3089e-004 4.3088e-004 4.3022e-004 4.2877e-004
ω11 1.1433e-005 1.1435e-005 1.0231e-005 1.0228e-005
ω12 1.1673e-003 1.1674e-003 1.1568e-003 1.1563e-003
ω21 7.4231e-005 7.4236e-005 7.4050e-005 7.0916e-005
ω22 4.3089e-004 4.3088e-004 4.3022e-004 4.2877e-004
φ11 2.2911e-003 2.2915e-003 2.2466e-003 2.2177e-003
φ12 1.6490e-003 1.6493e-003 1.6069e-003 1.5984e-003
φ21 8.1469e-003 8.1479e-003 8.0871e-003 8.0618e-003
φ22 1.1979e-002 1.1981e-002 1.1817e-002 1.1808e-002

5. CONCLUSIONS

In this paper, we have developed an explicit expression for
the calculation of the Cramer Rao lower bound for a class of
2D signals which are samples of outputs of 2D continuous
separable-denominator systems. For the special but impor-
tant case of uniform sampling, the Lyapunov approach is
exploited which has speeded up considerably for the calcu-
lation of the Fisher information matrix. We believe that the
presented results will have a significant impact on applica-
tions dealing with a large number of data samples and a large
number of parameters to be estimated.
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