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ABSTRACT damped exponential signals is not available in the litera-

This paper shows how the Fisher information matrix of a ture. In [4] the Fisher information matrix was derived for
pap a concrete problem arising in NMR spectroscopy. How-

given two-dimensional (2D) data set can be expressed us- ) -
> . . ever the approach taken there uses the ‘hand calculation’ to
ing the matrices that determine the 2D system that generates, _ . . : S .
. o derive the analytical expression, which is time-consuming
the data set. For uniformly sampled data it is shown how - Lo
) . : . and cumbersome. Recently, a systematic investigation of
the Fisher information matrix can be expressed through the

solutions of Lyapunov equations. The novel techniques arethe CRLB or Fisher information matrix for the case of one-
yap d o d dimensional (1D) deterministic dynamic systems corrupted
demonstrated with an example arising from nuclear mag-

netic resonance Spectroscopy by measurement noise is presented in [6]. In this paper, we
' generalize the results of [6] to 2D data described by (1), us-
ing 2D system theoretic methods. This generalization is,
1. INTRODUCTION however, not a straightforward extension of the results in [6]
due to the significantly more intricate structure of 2D sys-
Data that can be considered to be generated by a twotems.
dimensional (2D) linear continuous system appears inmany  To derive a systematic approach to data sets described
areas of applications. For example, in nuclear magnetic res+in (1) we consider a 2D complex single-input single-output
onance (NMR) spectroscopy it can be shown ( [1]) that the continuous system with a separable denominator using
data of a so-called 2D NMR experiment typically has the Roesser’s model (RM)

form
9 ..h h
s Te(tite) | [ A A xg(t1,t2)
Y(t1,t2) = Cre " Appe?2 By, 11,1, >0, (1) { ait:x};(tl,tQ) T 0 Ay zy(t1,t2)
where Aq1, A2, A, C1, Bo are matrices of compatible By
. . . + B u(t17t2)7
sizes. The fundamental problem in NMR spectroscopy is 2

that the system matrices are dependent on parameters (e.qg.
the resonant frequencies of the magnet spins) which need to
be estimated through the experiment.

Estimation of parameters that determine dynamic datawhere t; > 0, t2 > 0, Ay, Aiz, Az, Bi, B,
is a frequently encountered problem in many areas of ap-C1 and C; are complex matrices of appropriate dimen-
plications. The question therefore naturally arises as to thesions depending on the unknown parameter ve€tor=
accuracy with which these parameters can be estimated. Th§ 0, 09 ... O ]T, xh(t1,t2), andzy(t1,t2) are hor-
Cramer Rao lower bound (CRLB) gives a lower bound for izontal and vertical state vectors respectivelyt;, t2) is
the covariance of the parameter estimates of an unbiased eshe input, and% denotes partial derivative with respect to
timation procedure for a given data set [2,3]. The CRLBis ;. (; — “Th iti i
in fact typically calculated as the inverse of a matrix called fs (7 =1,2). The boundary conditions are given by
the Fisher information matrix. The relevance of this result xg(o@), zy(t1,0), t1 >0, ty >0.
is not only to evaluate a particular estimation procedure but
can also give guidance for an appropriate design of an ex-  In the following lemma we characterize the input-output
periment to collect data (see e.g. [4]). description of such a system. See [7] for a proof.

Various methods have been suggested for the computa-
tion of the CRLB for the parameter estimation problem of Lemma 1.1 The output of the above 2D continuous
2D undamped exponential signals with additive noise [5]. separable-denominator system is given by
However, to our best knowledge, a closed form expression
for the CRLB for the parameter estimation problem for 2D yo(t1,t2) = vg(t1,t2) + qo(t1,t2), t1 >0, tz > 0.
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Here vy(t1,t2) is the system response due to non-zero the computation of solutions to certain Lyapunov equations.
boundary conditions andy(¢1,t2) is the system response Proofs can be found in [7]. An NMR example is given in

due to system input, which are given by Section 4.
at h Asts We denote bydiag (M;, Mo, ..., M,) the block diago-
vg(t1,t2) = Cre™ " ag (0, t2) + Cae™*ag(t,0) nal matrix whose diagonal block entries arg, Mo, ..., M,,

h Avi(t1—71) Aonts v and all other block entries are zero matrices.
+ Cle EEAE IR A12€ 22 21’@(7‘1,0)(17’1,
0

2. FISHER INFORMATION MATRIX

and
h A1 (t—71) t2 With the Gaussian noise model discussed in Section 1 the
a0 (1, t2) :/O Cre Buu(r, t2)dm + /0 Cz probability density function is given by
11 to 1
. eAZQ(tZ*TQ)BQU(tl, 7-2)d7-2 + / o p(S; @) :quvz_olni\/,f:_oli
0 Jo \ /27T0'12,L7m
. €A11(tl7T1)A12€A22(t277—2)32u(7'1, TQ)dTldTQ. 1

by [Re{so(n,m)}—Re{yo (t1n,t2m)}]”
. e n,m

Note that the data model that motivated our study in (1) .
can be seen to be the output of such a system if we set e 2hm
u(t1,t2) = 6(t1,t2), which is the 2D unit impulse func- ] ) .
tion, 23 (t1,0) = 0, 2(0,5) = 0, B, = 0 andCy = 0. In the following .Iemm.a we are going tp collect some basic
For simplicity, the remainder of this paper is based on this results on the Fisher information matrix adapted to the par-
assumption for the data model in (1). ticular data model that we consider (see e.g. [2]).

Assume that we have acquired noise corrupted sample§ omma 2.1 1) Forl <s,t < K
sg(n,m)(n=0,1,...,N—1; m =0,1,..., M—1) of the -

[Im{se (n,m)} ~Im{yo (t1n t2m)}]?

measured output of a 2D continuous separable-denominator 16 9 In(p(S; ©)) NoIM-1
system at various point$;,,, ta., ), i-e. (O, =— ( 90,00, ) = ngo mZ:O U%,m
so(n,m) = yo(tin, tam) + w(n,m), Re { 8Y(tin, tam) 9Y5 (tin, tam)
00, 00, ’

where yy(t1,, t2,,) is the noise free data acquired at the
sampling point(¢y,,, ta,,) andw(n, m) is the measurement where(-)* denotes complex conjugate.
noise component assumed to be complex Gaussian with zero

mean. The real and imaginary part(in, m) are assumed 2) Let
to have variance, ,,,, and to be independent/uncorrelated, Ao (t1n,tam)
i.e. var(Re{w(n,m)})= var(Im{w(n,m)}) = o7, and 3y9(29n,1,t2m)
E(Re{w(n,m)} Im{w(n,m)})= 0. D — 992
By the Cramer Rao Lower bound, any unbiased estimate Yo lfantarm) :
© of © has a variance (provided certain regularity conditions AYo (t1n,tom)
hold) such that %k
var(©) > I71(0), Then
wherevar(©) > I-1(0) is interpreted as meaning that the NolM-1
matrix (var(©) — I~1(0)) is positive semidefinite [2]. Here 10)=> > o2 Re {Dys(tlmtzm)Dgﬁ(tln,tzm)} ;
n=0 m=0 ™M

1(0) is the Fisher information matrix given by

8?In(p(S; 0))

where(-)f denotes complex conjugate transpose.
©® =—-F( 77 1< < K
[1(®)]st ( 00,00, ) ’ sstsk,

In order to calculate the Fisher information matrix it is
necessary to compute the derivat%% of the out-
put with respect to the elemefit of the parameter vect®,
s=1,..., K.

where® is the unknownK x 1 parameter vectols is the

measured data sei(S; ©) is the probability density func-

tion of the measurements af-) is the expected value with

respect to the underlying probability measure. Lemma 2.2 For the 2D continuous separable-denominator
With the above background, the next section discussessystem with impulse inputty, to) = d(t1,t2), andB; = 0,

the derivation of the Fisher information matrix for the 2D ¢, = 0, 2(¢,,0) = 0, 2} (0, t5) = 0,

data set given by (1). For the special but important case of

uniformly sampled data we show in Section 3 that the com- Oyo(ty,ta) 8,0 At 9. A e Ant2g B,

putation of the Fisher information matrix can be reduced to 00 ° ° o
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Here plane, wherel'; and T, are the sampling intervals for the
variablest; andt, respectively. Theorem 2.1 can then be

0sA11 = [ 511141111 AO } , 0sA19 := [ 54}41122 AO } ; simplified significantly with the Lyapunov approach. For
a0, 11 90, 12 convenience of exposition, we denotg; := ¢”411 "1 and
. ,Da,, T
Ay 0 By Agy = ePaxlz,
O0sA22 = | 9Ag A , OsBy = | 5B, |, _
90, 22 90, Theorem 3.1 Consider the data model of Theorem 2.1 and

9.0 — { 2CL } assume that the signal is uniformly sampled with sampling
R ' intervalsT; for the variablet; and T for ¢, i.e., atty, =

In the following theorem we summarize the previous re- 711:7 = 0, 1,..., N =L tay = mT5,m =0, 1,..., M =
sults and state the general expression for the Fisher infor-1- Moreover, assume thatall the elgenvalugﬁ@f ".’mdA” .
mation matrix for the data set corresponding to the output of are in the open left half plane. Then the Fisher information
the 2D continuous separable-denominator system. matrix is given by

1

Theorem 2.1 Consider the augmented derivative system 1(©) = —Re{Dc, PiDE },
given by o? 1
. whereP; is solved as follows. Obtaif?, as the unique so-
Dy, = diag (01A11,02411,...,0x A1), ! 2 q

lution to the following Lyapunov equation
DA12 = dlag (81A12, 82A12, ey 8KA12),
D 4, = diag (01 A2, 02A20,...,0K As2),

01 B> and then gef”; as the unique solution to the following Lya-
05 B> punov equation

ApPoAll, — Py = —Dp,DE + AN D, DE (AN,

D32 = 5

AnPi A —Py = —Da,, P.DY +AYN D4, PDY (AJ)Y

Ok B
) o In the case that there are an infinite number of equidis-
De, = diag (01C1, 02Ch, .., Ok Ch). tant samples in either of the variablg ¢, or both, Theo-
Assume that the 2D system is the same as that inrem 3.1 can be simplified to the following two corollaries.
Lemma 2.2. We have
Corollary 3.1 Assume that the 2D system is the same as

Doty 1) = DeyeP4111 Dy eP 42 Dy, . that in Theorem 3.1, except that there are an infinite num-
ber of equidistance samples in thevariable, i.e. t;,, =
For the 2D data set sampled a(t_m,tzm) (”_ = nTy, n =0,1,...,00. Then the Fisher information matrix
0,1,...,N—=1m=0,1,..., M — 1) with noise variance g ;i
. . . L given by
o2, =: 02, the Fisher information matrix is given by
1
| N=1m- . 1(©) = ;Re{DClPngl},
1(6) - ? Z Z Re {Dyf)(tlnvt2m)Dy9(t1n,t2m)} ' . N .
n=0 m=0 whereP; is solved as follows. ObtaiR, as the unique so-
) lution to the following Lyapunov equation
3. FISHER INFORMATION MATRIX FOR ApPyAly — Py = —Dp, Dy, + Al Dp, D, (Aj)"

UNIFORMLY SAMPLED 2D DATA ) ) _
and then gefP; as the unique solution to the following Lya-

Although Theorem 2.1 in the previous section is valid for punov equation

both uniform and nonuniform sampling schemes, it is com- " "

putationally rather inefficient to directly compute the 2D AnPrAg — PL=—Da,, 2Dy, ,.

summations in (2), particularly in the case when the num- i

ber of samples is large. In this section, we develop an ef- Corollary 3.2 Assume that the 2D system is the same as

ficient method for calculating the Fisher information ma- that_d|_n Theoreml 3.1, excep_t tg‘?‘t k?n hu;ﬂnlted numb_er of
trix for 2D data generated by uniformly sampling the out- eg:u |s_,tant sa_mp es are_acquwe n . ot 1_@1” t2 Va“_'
put of the 2D continuous separable-denominator system in20/€S: 1-€-f1n = nT1, n =0,1,...,00; tay = mTs, m =

Lemma 2.2. To this end, it is assumed that all the eigenval—o’ 1,..., c0. Then the Fisher information matrix is given by
ues ofe411 T ande?22™ are in the open unit disk or equiv- 1 Y
alently the eigenvalues of;; and Ay, are in the open half 1(©) = —Re {Dc,PADE },
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where P; can be solved as follows. First obtai}, as the
unigue solution to the Lyapunov equation

ApPyAl, — P, = —Dp,Dj |
then getP; as the unique solution to the Lyapunov equation

APl Al — P = —Dy4,,P,DY .

4. EXAMPLE

Consider the simulated 2D NMR data having the form

Z Ckle(ﬁk+i11)1k)t1+(7“2l+iw21)t2+i¢m

11

yo(t1,t2) =

k= 1

where the parameter vector is given by

O

[0117 C12, C21, C22, T'11, T12, T21, T22, W11, W12,

T
wo1, Wa2, P11, P12, P21, ¢22}

The above simulated 2D NMR data can be considered as
the output of a 2D continuous separable-denominator sys-

tem with a state-space realization given by

[ 711+ iwis 0
11 I 0 19 + iws :| ) 1 [ ] )
[ Cllei¢11 6126i¢12
Arp = I Cor€'21  cggetP22 |7 ¢y =0,
_ [ 791 + dway 0 . |1
A22 - I 0 Too +7:(.U22 :| ) Bl - Oa BQ - |: 1

where the input and initial conditions are given by
U(t17t2) = (5(t1,t2), xS(O,tg) = O7 Iz(tl, 0) = 0
we fix the values of the parameter vectdas

[0.15, 0.22, 0.12, 0.13, —0.1, —0.35, —0.15, —0.45,
1.445, 2.136, 2.702, 0.88, 0.683, 1.366, 2.4167, 0.982]"

To apply the methods in Section 3, the first step is the calcu-
lation of the derivative system determined by, ,, Da,.,,
D4,,, De, and Dp, in Theorem 2.1. Detailed calculation
is omitted here but can be found in [7]. Next, we obtain the
CRLB for the simulated NMR data with additive Gaussian

noise using the method of [4] and the new methods proposed

infinite number of samples for both andt,, as verified by

this example. The significance is that the new methods are
computationally much more efficient than the method of [4].
For this example as well as many other simulations we have
conducted, the computational time using the method of [4]
is at least 100 times more than that using the new methods
for the same PC under the same conditions.

Table 1. CRLB for Different Methods witfi’,; = 0.015,
Ty = 1.54, N = 2048, M = 16

] Method of [4] | Theorem 3.1| Corollary 3.1 | Corollary 3.2
c11 5.1551e-005 | 5.1559e-005| 5.0550e-005 | 4.9898e-005
C12 7.9816e-005 | 7.9828e-005| 7.7776e-005 | 7.7365e-005
Co1 1.1731e-004 | 1.1733e-004| 1.1645e-004 | 1.1609e-004
[ 2.0245e-004 | 2.0249e-004 | 1.9971e-004 | 1.9956e-004
11 1.1433e-005 | 1.1435e-005| 1.0231e-005 | 1.0228e-005
12 1.1673e-003 | 1.1674e-003| 1.1568e-003 | 1.1563e-003
21 7.4231e-005 | 7.4236e-005| 7.4050e-005 | 7.0916e-005
729 4.3089e-004 | 4.3088e-004 | 4.3022e-004 | 4.2877e-004
w11 | 1.1433e-005 | 1.1435e-005| 1.0231e-005 | 1.0228e-005
w12 | 1.1673e-003 | 1.1674e-003| 1.1568e-003 | 1.1563e-003
woy | 7.4231e-005 | 7.4236e-005| 7.4050e-005 | 7.0916e-005
wao | 4.3089e-004 | 4.3088e-004| 4.3022e-004 | 4.2877e-004
$11 | 2.2911e-003 | 2.2915e-003| 2.2466e-003 | 2.2177e-003
¢12 | 1.6490e-003 | 1.6493e-003| 1.6069e-003 | 1.5984e-003
¢21 | 8.1469e-003 | 8.1479e-003| 8.0871e-003 | 8.0618e-003
¢oo | 1.1979e-002 | 1.1981e-002| 1.1817e-002 | 1.1808e-002
5. CONCLUSIONS

In this paper, we have developed an explicit expression for
the calculation of the Cramer Rao lower bound for a class of
2D signals which are samples of outputs of 2D continuous
separable-denominator systems. For the special but impor-
tant case of uniform sampling, the Lyapunov approach is
exploited which has speeded up considerably for the calcu-
lation of the Fisher information matrix. We believe that the
presented results will have a significant impact on applica-
tions dealing with a large number of data samples and a large
number of parameters to be estimated.
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