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ABSTRACT

This paper investigates the impact of SAR image enhance-
ment on the performance of small target detection in SAR
images. Three SAR image enhancement algorithms are eval-
uated on large SAR image data-sets. The evaluation results
show that image enhancement can greatly improve the per-
formance of false alarm mitigation, and that the level of
performance improvement is correlated with the resolution
and background suppression of the enhanced images. The
higher the resolution and the level of background suppres-
sion, the higher the level of performance improvement.

1. INTRODUCTION
Enhancement of synthetic aperture radar (SAR) images

reduces speckle, increases signal-to-noise ratio, enhances
dominant domain features [1, 3, 2, 4, 5], and improves greatly
the performance of automatic target recognition (ATR) in
SAR images [7, 8, 9].

In [7, 8, 9], image enhancement is applied to the tar-
get containing subimages before feature extraction to im-
prove the performance of ATR. The same approach can also
be employed in small target detection (STD) in SAR im-
ages. In such applications, detection can be done in two
stages: the first prescreening stage filters out the suspicious
subimages using fast detection algorithms which are set to
have a high detection rate at the sacrifice of false alarms;
the second false alarm mitigation (FAM) stage uses image
enhancement and pattern classification of the features ex-
tracted from the enhanced subimages to mitigate the false
alarms. This two stage approach has proven to be very ef-
fective for STD in SAR images.

However, the operation condition and task of STD are
different from those of ATR. STD normally works on the
SAR images of lower resolution and contrast, and its task
is to discriminate targets from backgrounds, which requires
less information of target shapes. As a result of these dif-
ferences, the image features used for FAM in STD are gen-
erally different from those of ATR, and the requirements on
image enhancement for STD may not be the same as those
for ATR. Thus, the ATR results reported in the literature
may not be directly applicable to STD.

The investigation presented in this paper compares dif-
ferent image enhancement methods and evaluates their im-

pact on FAM in STD, which provides a deeper insight into
SAR image enhancement for STD in SAR images.

2. SAR IMAGE ENHANCEMENT ALGORITHMS
The SAR image enhancement algorithms considered in

this paper are multi-look processing, Minimum Variance
(MV) and MUltiple SIgnal Classification (MUSIC) algo-
rithms [4, 5]. These algorithms have proven to be effec-
tive for speckle reduction and resolution improvement [4]
and are not computationally too heavy, hence can be tested
on large data-sets relatively easily. Also, from low to high
in the order of appearance, these algorithms provide differ-
ent level of background suppression, therefore, the effect of
background suppression on target and background discrim-
ination can be compared using these algorithms.
Multi-look processing

Fig 1 illustrates the steps of multi-look processing for
generating a 4-look image. In the figure, x ∈ CN×N is a
given complex SAR image, and X ∈ CN×N its phase his-
tory which can be obtained by a 2D FFT (FFT2) of x and
the subsequent removal of any aperture weighting that may
have been applied to form x. By hologram property [5],
each piece of the phase history is sufficient to reconstruct
an image of the entire scene. Thus m looks of the same
scene can be created by evenly subdividing its phase his-
tory into m pieces and performing inverse FFT2 (IFFT2)
on these pieces. Incoherent sum of these looks gives an in-
tensity only real image of the scene with reduced speckle,
which is called multi-look image. The more looks used,
the more reduction of speckle. Compared with the image
formed by IFFT2 of the entire phase history, the resolution
of this multi-look image is

√
m times lower, and its size

(number of pixels) is m times smaller. The interpolation
performed with IFFT2 is to generate an image with same
or larger size. In our investigation it is performed by zero
padding Xi on all sides, so that the resulting array is a factor
of k (k = 4 in Fig 1) larger than the original Xi. The indi-
vidual looks xi are generated by IFFT2 of these zero padded
arrays.

Usually, multi-look technique is used in SAR imaging
only when the aperture over which the data is collected is
significantly large [5] so that the image resolution is not
compromised too much. As the size of sub-images to be
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Fig 1: Multi-look processing

classified at FAM is relatively small and a relatively large
number of looks is required for effective speckle reduction,
the size of each subdivided phase history piece that is used
to form an individual look is even smaller. Therefore, the
resolution of the images enhanced with this technique will
be much lower than the original ones. This may cause the
small targets adjacent to each other within an sub-image be-
ing merged into a single bigger target. However, the task of
FAM is to determine whether or not the central pixels of a
given sub-image belong to target/s (this is always true since
in practice the sub-images can always be cut out around the
central pixels detected by prescreening), and identification
of the number of targets is not required. As long as the in-
tensity of the merged targets are strong enough in the multi-
look image, the lower resolution might not be adverse to
FAM. This has been confirmed by the experiment results
presented in Section 4.
MV algorithm

Let X ∈ CN×N be the phase history of a given complex
image x ∈ CN×N , Xi ∈ Cn×n be a subblock of X with n ≤
N , Y ∈ Cn2

be the data vector formed by column ordering
of Xi, R ∈ Cn2

×n2

be the correlation matrix of Y , M ×M
be the required output image size, and W (k, l) ∈ Cn×n be
the matrix defined as W (k, l) = [wij(k, l)]

i,j=1,2,··· ,n
:=

[

exp
(

I 2π
M

(ik + jl)
)]

i,j=1,2,··· ,n
, where I =

√
−1. The

kl-th pixel of the MV image is given by

xkl =
1

V ∗(k, l)R−1V (k, l)
, k, l = 1, 2, · · · ,M, (1)

where V (k, l) ∈ Cn2

is the vector formed by column or-
dering of W (k, l) and ∗ denotes conjugate transpose. Nor-
mally, M ≥ n. When M > n, the algorithm performs also
interpolation, and the interpolation factor k = M/n. The
images generated by MV algorithm (1) are intensity only
real images.

The correlation matrix R is estimated from the given
phase history data X . To get a full rank estimate of R, the
subblocks contiguous to Xi are used. The number of sub-
blocks is chosen such that it equals at least n2, the rank

of R. As X is the only data available, the size of Xi,
n × n, cannot be too large, otherwise, there will not be
enough subblocks available. On the other hand, for better
resolution, n should be as large as possible. To alleviate
this difficulty, the forward and backward averaging [4] is
employed to double the number of subblocks that can be
used to estimate R. Specifically, let Yi be the data vector
of the i-th subblock Xi, m ≥ n2/2 be the total number
of contiguous subblocks within X , and R̂ be the estimate
of R. The forward and backward averaging is given by
R̂ = 1

2m

∑m

i=1
(YiY

∗

i + JY ∗

i Y T
i J), where J is the matrix

obtained by rotating 90o an identity matrix with compati-
ble dimension. The contiguous subblocks are formed using
a sliding window of size n × n, and the subblock size is
40% − 60% of the full size of X [4]. The R̂ thus estimated
replaces the R in MV algorithm (1).

The computation complexity of MV algorithm is on the
order of n6 [4], that makes the algorithm too heavy to per-
form even for a small image of size 64×64 and a 40%−60%
subblock size. To alleviate this difficulty, the mosaiccing
strategy [4] shown in Fig 2 is used: The original image
X is first subdivided evenly into p2 overlapping subimages,
FFT2 and the subsequent removal of aperture weighting are
performed on each subimage to recover its phase history;
the phase history of each subimage is processed with MV
algorithm (1) to generate the enhanced subimages; the en-
hanced subimages are mosiacced back after trimming off
the overlap borders to composite a complete enhanced im-
age. Using this strategy, the computation complexity for
each subimage drops by a factor of p6. For serial computa-
tion of the p2 subimages, which is used in our investigation,
the overall improvement factor is p4 [4].
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Fig 2: Mosiaccing strategy

MUSIC algorithm
MUSIC algorithm uses the formula below to calculate

the kl-th pixel of the enhanced image.

xkl =
1

1

C

∑n2

i=r+1
V ∗(k, l)eie∗i V (k, l)

. (2)

In the above formula, r is the dimension of signal subspace
[4, 6], V (k, l) is as defined in MV algorithm, ei is the i-
th singular vector of R̂ as described in MV algorithm, and

C is given by [4] C =
∑

n
2

i=r+1
λi

n2
−r−1

. The implementation of
MUSIC algorithm is similar to that of MV algorithm, which
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involves all the steps shown in Fig 2, calculation of R̂, plus
singular value decomposition of R̂.

3. TESTING THE ALGORITHMS
The three algorithms discussed in Section 2 have been

tested on the complex SAR image data-sets. The testing re-
sults are presented below using six representative examples.
These examples are selected from the 27, 226×3 false alarm
and 1, 434 × 3 target image chips enhanced respectively by
the three algorithms. All the original image chips are ob-
tained from precreening large spotlight SAR images formed
by the traditional IFFT2 of phase history data, with resolu-
tion ≥ 1m. The size of the image chips is 64 × 64, and the
targets are vehicle type objects with size less than 8×8 pix-
els centered at the position (32,32) of the image chips. As
the aperture weighting used in forming these images are not
known, it is assumed that no aperture weighting had been
applied in image formation. Therefore, the FFT2 of these
complex image chips are used as their phase histories. The
examples of all three algorithms use the same target and
false alarm image chips, so that direct comparison of these
algorithms can be made. The following setups are used in
the tested algorithms.
Multi-look processing: The recovered phase history is sub-
divided into 16 blocks with same size 4 × 4. Each block is
further interpolated to a factor of 16 and IFFT2-ed to form
16 looks of size 64×64, which are incoherently summed to
form the 16-look image.
MV and MUSIC algorithms: The central 50 × 50 pixels of
the original image chips are subdivided into p2 = 25 over-
lapping subimages; the size of each subimage is 12 × 12,
with 1 pixel overlap on all sides, and the FFT2 is performed
on each subimage to recover its phase history; the size of
subblocks used in calculating R̂ is 6×6, and the size M×M
of each enhanced output subimage is 12 × 12, ie the in-
terpolation of a factor of 2 has been incorporated in MV
and MUSIC algorithms; the 1 pixel border is trimmed off
on all sides of the enhanced output subimages, and the re-
maining 10×10 central pixels of these enhanced subimages
are mosiacced together to composite a 50 × 50 enhanced
image. Under the above settings, the dimension of R̂ is
36× 36, and there are m = 49 subblocks available for each
(forward/backward) direction and a total of 98 subblocks
for forward-backward averaging, which guarantees the non-
singularity of R̂. For MUSIC algorithms, r = 9 is chosen
as the dimension of signal subspace, which was estimated
using empirical data and Akaike information criterion [4].

Fig 3 gives the original target and false alarm images
and their enhanced counterparts. As can be seen, in all
the enhanced images, the speckle has been significantly re-
duced. In the enhanced false alarm images, the central false
alarm pixels become dimmer; in the enhanced target im-
ages, the target becomes more pronounced. In MV and
MUSIC images, the target becomes much sharper. Fig 4
compares the 3D intensity mesh of the original and MUSIC
enhanced target images. It can been that the background
floor of MUSIC image is almost completely flat, showing a
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c. MV images
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d. MUSIC images
Fig 3: Original and enhanced images

left: target, right: false alarm

very significant background noise reduction.
In the order of appearance, the three algorithms provide

different level of background suppression. Multi-look pro-
vides the lowest level suppression and MUSIC the highest.
The level of background suppression is an important affect-
ing factor in visualization. If the background is suppressed
too much, the terrain texture in the image background will
be destroyed and the enhanced image will have lost its re-
semblance to the original image. In the extreme case, such
as the MUSIC images given in Fig 3d, the background be-
comes almost invisible. Definitely, this is not desired if a
better visualization is the main purpose of image enhance-
ment. Therefore, the algorithms such as MUSIC which sig-
nificantly suppress the backgrounds are not recommended
in the literature for SAR image enhancement [4]. However,
a better visualization does not necessarily imply a better dis-
crimination of target and background. From the view point
of detection, the images with only bright target spots and
completely dark backgrounds might be the best.

4. FAM USING ENHANCED SAR IMAGES
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Fig 4: 3D intensity mesh of target images
left: original, right: MUSIC

Two sets of SAR image data were used to investigate the
impact of image enhancement on FAM. The images con-
tained in the two data-sets are exactly same, except one set
is the complex data of the images and the other is the in-
tensity only real data. Each set contains 27, 226 false alarm
and 1, 434 target chips with the same size 64 × 64. The
three algorithms with the setups given in Section 3 were ap-
plied respectively to each image chip of the complex data-
set to create three data-sets of enhanced image chips (re-
ferred to as enhanced data-sets). As the images generated
by the three algorithms are all intensity only real images,
the performance of FAM achieved on the enhanced data-sets
is compared with that obtained from the non-enhanced in-
tensity only real data-set (referred to as non-enhanced data-
set).

The same image features were extracted from the image
chips of the three enhanced data-sets and the non-enhanced
data-set. The features from the same data-set were classi-
fied using a Fisher linear discriminant to discriminate the
targets from false alarms. The classifier was trained with
40% of the feature data. The features used are the five best
features selected on the non-enhanced data-set, these are the
image mean, the (1, 2)-th coefficient of the FFT2 of the im-
ages, and three co-occurrence matrix features. Because the
co-occurrence matrix features are sensitive to image mean,
a search of the best value for shifting image mean was per-
formed on each data-set. The reason for doing so is to com-
pare the best performance achievable on each data-set using
the same features.

Given in Table 1 are the probabilities of false alarm Pfa

at the probabilities of detection Pd = 90% achieved on dif-
ferent data-sets. Compared with the non-enhanced data-set,
all the enhanced data-sets provide significant performance
improvement. Among the three enhanced data-sets, MU-
SIC enhanced data-set gives the highest performance: at
Pd = 90%, Pfa = 1.2277%, which is 3.65 times lower
than that of the non-enhanced data-set.

MUSIC MV Multi-look Non-enhanced
1.2277% 1.5734% 2.1242% 4.4828%

Table 1: Pfa at Pd = 90% achieved on different data-sets

5. CONCLUSIONS AND DISCUSSIONS
Three algorithms for SAR image enhancement have been

used to investigate the impact of image enhancement on the
false alarm mitigation of small target detection in SAR im-
ages. The testing results show that image enhancement im-

proves greatly the performance of false alarm mitigation and
that the best performance improvement achieved on tested
data-set is a 3.65 times reduction of Pfa at Pd = 90%.

The testing results also show that compared with ATR,
STD requires different properties from image enhancement.
As the purpose of image enhancement for STD is target and
background discrimination but not visualization, the algo-
rithms such as MUSIC, which does not provide good visu-
alization and is not recommended in the literature for SAR
image enhancement [4], can actually provide better perfor-
mance of small target detection in SAR images. The level of
performance improvement is correlated with the resolution
and background suppression of the enhanced images. The
higher the resolution and the level of background suppres-
sion, the higher the level of performance improvement.
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