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ABSTRACT

In this paper, the problem of two-dimensional (2-D) fre-
quency estimation of a complex sinusoid embedded in a
white Gaussian additive noise is addressed. A new fre-
quency estimator based on a least square plane fitting of
the estimated autocorrelation phase of the signal is derived.
This algorithm requires a 2-D phase unwrapping step which
can be easily done. This algorithm is shown to be unbiased
and attains the Cramer Rao bounds for high signal to noise
ratio (��� � ���).

Accuracy and robustness of this new 2-D frequency esti-
mator are statistically assessed by Monte Carlo simulations.
The results obtained show that a good local frequency esti-
mation can be achieved with a very simple algorithm, and
a very small amount of points used for the autocorrelation
estimation.

1. INTRODUCTION

Two-dimensional (2-D) frequency estimation has been widely
studied. Among its classical applications, we could men-
tion the use of spectral properties for image segmentation or
classification (e.g., [1]). In [2], authors proposed to decom-
pose a texture into a sum of an indeterministic and a deter-
ministic field, which can be characterized by 2-D resonant
frequencies. Two-dimensional frequency estimation is also
of interest in fields such as sonar and radar. This problem
can be achieved using 2-D Fourier transform based meth-
ods, but they require large data set and stationarity. These
assumptions, which are very restrictive for real life images,
reduce the use of such methods. Therefore, short term fre-
quency estimators have to be developed. For this purpose,
autoregressive methods, which are said to be of high reso-
lution [3], [4], have been proposed (e.g., [5], [6]). However,
for real time applications, it is of great importance to design
very simple algorithm.

The problem of 2-D frequency estimation of a complex
sinusoid embedded in a white Gaussian additive noise is ad-
dressed in this paper through the use of the estimated auto-
correlation. By fitting a plane on the estimated autocorre-
lation phase, we are able to estimate the frequencies. This
algorithm requires a 2-D unwrapping stage which can be
easily done on the estimated autocorrelation phase.

The paper is organized as follows. In section II, the
model of the complex signal and its autocorrelation is pre-
sented. The algorithm is then developed in section III. Per-
formances are statistically assessed by Monte Carlo simu-
lations in section IV. Finally, in section V, we present the
main conclusions.

2. TWO-DIMENSIONAL COMPLEX SIGNAL
MODEL

In this work, we assume that the signal to process is a com-
plex sinusoid embedded in complex white Gaussian additive
noise given by :

���	 
� � � ��� ���
���� 	 ��
	 ��� 	 ���	 
�	 (1)

where :

� � � 
���� � �� and
 � 
����� ��,

� �� and� are the frequencies along the��� and the�
�

directions,

� � is the initial phase, uniformly distributed in
����
�,

� ���	 
� is the zero-mean complex white gaussian ad-
ditive noise, with variance���. In this case, variances
of real and imaginary parts of���	 
� are� ����.

� � is a real constant and will be assumed to be� for
simplifications, without loss of generality.
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The signal to noise ratio (���) can be defined as��� �
�����. Figure 1 represents an example of the real part of
���	 
� given by eq. (1), with�� � �� � ���
 and��� �
�� ���

��
� �

��
�

� � ���.

Fig. 1. Real part of a��� �� signal example for�� � �� �
���
 and��� � ���.

As already mentioned in introduction, we propose in
this work a new estimator for�� and�� based on the anal-
ysis of the unbiased estimation of the autocorrelation se-
quence of���	 
� given by :

����	 
� �
�

� � ���

�

�� �
�
�

��������
���

��������
���

����	�����	 �	 �	 
��

(2)
After some straightforward calculations����	 
� can be writ-
ten in the following form :

����	 
� � ��	��	 
� 	 ���	 
�	 (3)

where

� ��	��	 
� � ������
���� 	 ��
� 	 �
�

����	 
� corre-
sponds to the theoretical autocorrelation sequence,

� ���	 
� is the two-dimensional Dirac function,

� and���	 
� is the estimation noise of���	 
�.

This complex additive noise can be converted in an additive
phase noise, using Tretter’s method [7]. For high���,

the autocorrelation estimation variance called� �
 is low for
small values of the lags��	 
�. Therefore, eq. (3) can be
rewritten as

����	 
� � �� 	 ���	 
�� ��� ���
���� 	 ��
�� 	 (4)

where���	 
� � ���	 
� ��� ����
���� 	 ��
��. According
to Tretter’s work [7], when��� is high, we obtain

����	 
� �
�

� 	 Re ����	 
���� 	 Im ����	 
��

�

����

� ���

�
� �����

Im ����	 
��

� 	 Re ����	 
��

�

� ��� ��Im ����	 
��� �
(5)

Therefore,

����	 
� � ��� ���
 ���� 	 ��
� 	 �Im �� ��	 
��� � (6)

This result shows that all the required information to es-
timate�� and�� is given by the phase angle of���	 
�. Fur-
thermore the use of the autocorrelation sequence of���	 
�
instead of the signal himself reduces the effect of the ad-
ditive noise���	 
�, especially when the��� is high and
the autocorrelation lags are small. In the next section, we
estimate�� and�� using a least square plane fitting of the
measured autocorrelation phase.

3. FREQUENCY ESTIMATION USING PHASE
PLANE FITTING

To estimate�� and��, we propose in this work a new al-
gorithm which consists in a least square plane fitting of the
phase which has first to be unwrapped. This is usually a
quite complicated task in noisy environments and most of
the methods already published on this subject try to avoid
unwrapping. However, thanks to the use of the autocor-
relation, the effect of the noise on the phase is reduced,
and the phase can be unwrapped using a very simple al-
gorithm described in the next section. A wrapped phase is
depicted in Figure 2 estimated from a�� � �� image with
�� � �� � ���
 and��� � ���.

3.1. Phase unwrapping

Several assumptions have to be done on the nature of the
autocorrelation phase, in order to unwrap it easily.

1. First of all, the theoretical autocorrelation phase is a
plane which equation is

���	 
� � ��� 	 ��
	 (7)

for ��� � � and�
� � �.
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Fig. 2. Estimated phase obtained from the autocorrelation
of the signal which real part is depicted on figure 1.

2. The estimated autocorrelation is by nature real for
� � 
 � �. Therefore����	 �� � ���	 �� � �.

3. Shannon’s theorem assures that jumps between con-
secutive theoretical phase of the lattice are lower than

.

4. The nearer��	 �� is ��	 
�, the lower is the autocorre-
lation estimation variance.

Therefore, a very simple algorithm for the 2-D phase un-
wrapping is to begin from the center of the autocorrelation
function i.e. ���	 ��. The middle column (� � �) is un-
wrapped from its center, and then, each row is unwrapped
from this centered column. Figure 3 shows the unwrapped
phase from figure 2.
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Fig. 3. Unwrapped phase from figure 2.

3.2. Estimation algorithm

Once the estimated phase is unwrapped, parameters of the
expected plane�� and�� from eq. (7) have to be estimated.
We propose in this work a Least Squares estimation (LS) of
those parameters, by plane fitting the estimated autocorrela-
tion phase. This can be done by minimizing the following
equation :

����	 ��� �
��

����


�
���


�
��� 	 ��
� ����	 
�

��
	 (8)

where
� �� � � 
����� � is the lattice used for fitting.
It has been previously reported that the autocorrelation esti-
mation variance increases when��� tends to� or �
� tends to
�, especially when the��� is low. As it can be seen in fig-
ure 4 for��� � �����, phase unwrapping may causes
some problems, giving noisy estimations of the frequencies.
That is the reason why and� has to be chosen carefully.
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Fig. 4. Unwrapped phase from a�����, ��� �� image.

By differentiating eq. (8) according to�� and��, we
find

�		

		�

��
����


�
���


�
�
���� 	 ���
 � ����	 
�

�
� �

��
����


�
���




�
���� 	 ���
 � ����	 
�

�
� ��

(9)

After simplifications, estimated parameters become

�							

							�

��� �
�

 �� 	 ��� 	 ����� 	 ��

��
���


�
���
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�
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�
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�
���

��
����
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Finally, frequencies estimations are given by

��� �
��
�


and ��� �
��
�

� (10)

4. PERFORMANCES

In order to study performances of this 2-D frequency esti-
mator, Monte Carlo simulations have been performed. Esti-
mations given by our plane fitting estimator have been com-
pared with the frequency estimator proposed by Kay in [8],
for the following parameters :

� � uniformly distributed in
�����
�,

� � � � � ��,

� �� � �� � ���
,

� ��� � 
�����������.

Results obtained show that our estimator has a bias lower
than���� for ��� �� images with��� � 
�����������,
whilst Kay’s estimator is about�� at 
��. Variances are
depicted in figure 5, and compared with the Cramer Rao
bound (CRB).
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Fig. 5. Estimated variances and Cramer Rao bounds.

According to Monte Carlo simulations, the plane fit-
ting frequency estimator appears to be unbiased even for
low ��� and its variance reaches the Cramer Rao bound
rapidly.

5. CONCLUSION

This paper is concerned with the problem of 2-D frequency
estimation on complex sinusoid embedded in a white Gaus-
sian additive noise. The proposed algorithm has been de-
rived from the autocorrelation of the complex sinusoid which

has a linear phase. The proposed estimator is based on a
plane fitting of the estimated autocorrelation phase. More-
over, the algorithm has a low complexity and can be used
for real time applications.

Performances of this algorithm have been studied thanks
to Monte Carlo simulations in the same conditions used by
Kay in [8]. We show the satisfactory behavior of our fre-
quency estimator, which appears to be unbiased and with a
variance close to Cramer Rao bounds. This plane fitting al-
gorithm has then been applied to smaller images (��� ��),
giving accurate estimations. These findings suggest that this
algorithm can be used for short 2-D term frequency estima-
tion.
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