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ABSTRACT The problem of 2-D frequency estimation of a complex

sinusoid embedded in a white Gaussian additive noise is ad-
Inthis paper, the problem of two-dimensional (2-D) fre- - gressed in this paper through the use of the estimated auto-
quency estimation of a complex sinusoid embedded in a correlation. By fitting a plane on the estimated autocorre-
white Gaussian additive noise is addressed. A new fre-|ation phase, we are able to estimate the frequencies. This
guency estimator based on a least square plane fitting Ofalgorithm requires a 2-D unwrapping stage which can be
the estimated autocorrelation phase of the signal is derived.easny done on the estimated autocorrelation phase.
This algorithm requires a 2-D phase unwrapping step which - The paper is organized as follows. In section I, the
can be easily done. This algorithm is shown to be unbiased ,ogel of the complex signal and its autocorrelation is pre-
and attains the Cramer Rao bounds for high signal to noisegented. The algorithm is then developed in section Ill. Per-
ratio (SN R > 0dB). formances are statistically assessed by Monte Carlo simu-

Accuracy and robustness of this new 2-D frequency esti- |ations in section IV. Finally, in section V, we present the
mator are statistically assessed by Monte Carlo simulations.main conclusions.

The results obtained show that a good local frequency esti-

mation can be achieved with a very simple algorithm, and

a very small amount of points used for the autocorrelation ~ 2. TWO-DIMENSIONAL COMPLEX SIGNAL
estimation. MODEL

In this work, we assume that the signal to process is a com-
1. INTRODUCTION plex sinusoid embedded in complex white Gaussian additive
noise given by :

Two-dimensional (2-D) frequency estimation has been widely
studied. Among its classical applications, we could men-  s(k,1) = Aexp (j27(fik + fol +0)) + n(k,1), (1)
tion the use of spectral properties for image segmentation or
classification (e.g., [1]). In [2], authors proposed to decom- Where::
pose a texture into a sum of an indeterministic and a deter-
ministic field, which can be characterized by 2-D resonant ~ * k€[0.K —1]andl € [0.L - 1],
frequencies. Two-dimensional frequency estimation is also
of interest in fields such as sonar and radar. This problem
can be achieved using 2-D Fourier transform based meth-
ods, but they require large data set and stationarity. These
assumptions, which are very restrictive for real life images,
reduce the use of such methods. Therefore, short term fre- o p(k, 1) is the zero-mean complex white gaussian ad-
quency estimators have to be developed. For this purpose, ditive noise, with variance?. In this case, variances
autoregressive methods, which are said to be of high reso- of real and imaginary parts of(k, 1) ares?2 /2.
lution [3], [4], have been proposed (e.qg., [5], [6]). However,
for real time applications, it is of great importance to design e A is a real constant and will be assumed tolkfer
very simple algorithm. simplifications, without loss of generality.

e f; and, are the frequencies along the and the'l’
directions,

e 6 is the initial phase, uniformly distributed [8..27],
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The signal to noise ratioS(V R) can be defined aSNR = the autocorrelation estimation variance caliedis low for
1/02. Figure 1 represents an example of the real part of small values of the lagék,l). Therefore, eq. (3) can be
s(k,1) given by eq. (1), withf; = f» = 0.05andSNR = rewritten as

10log,,(5z) = 0dB.
" Pk, 1) = (1 + z(k, 1) exp (j2n(fik + f2l)),  (4)

wherez(k, 1) = e(k,l) exp (—j2n(f1k + f2l)). According
to Tretter's work [7], wherS N R is high, we obtain

ik = (11+Re(a(k 0} +1m{=(k.0y)

pIm{z(k,0)} >
1+ Re{z(k, 1)}

~ exp (jim{=(k,1)}).

X exp (jtan

(®)

Therefore,

Pk, 1) > exp (j2m (fik + fal) + jim{z (k,1)}) . (6)

This result shows that all the required information to es-
timate f; andf is given by the phase angle ofk, ). Fur-
thermore the use of the autocorrelation sequencgiof)
instead of the signal himself reduces the effect of the ad-
ditive noisen(k, 1), especially when th6 N R is high and
the autocorrelation lags are small. In the next section, we
estimatef,; and f, using a least square plane fitting of the
measured autocorrelation phase.

Fig. 1. Real part of 80 x 30 signal example fof; = f, =
0.05andSNR = 0dB.

As already mentioned in introduction, we propose in 3. FREQUENCY ESTIMATION USING PHASE

this work a new estimator fof; and f, based on the anal- PLANE FITTING
ysis of the unbiased estimation of the autocorrelation se- ] ] ]
quence ofs(k, 1) given by : To festlmate_:fl and f:g, we propose in this work a new al-
gorithm which consists in a least square plane fitting of the
R 1 1 phase which has first to be unwrapped. This is usually a
Pk, 1) = K —|k| L -l X quite complicated task in noisy environments and most of
K—|k|-1L—|l|-1 the methods already published on this subject try to avoid
Yo Y s mn)s(m+k,n+1). unwrapping. However, thanks to the use of the autocor-
m=0  n=0 relation, the effect of the noise on the phase is reduced,

) i (2_) and the phase can be unwrapped using a very simple al-
After some straightforward calculationgk, ) can be writ- grithm described in the next section. A wrapped phase is
ten in the following form : depicted in Figure 2 estimated from8& x 30 image with
fi = f» = 0.05andSNR = 0dB.

Pk, 1) = ren(k, 1) + e(k, 1), (3)
where 3.1. Phaseunwrapping
o (k1) = exp(j2m(fik + fol) + o2d(k,1) corre- Several assumptions have to be done on the nature of the
sponds to the theoretical autocorrelation sequence, autocorrelation phase, in order to unwrap it easily.
e d(k,1) is the two-dimensional Dirac function, 1. First of all, the theoretical autocorrelation phase is a

plane which equation is
e ande(k,!) is the estimation noise efk, ).
ok, 1) = wik + wal, 7
This complex additive noise can be converted in an additive
phase noise, using Tretter's method [7]. For high' R, for |k| < K and|l| < L.
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L-1

wl;w2 Z Z [w1k+w21—¢(k l)] , (8)

—MI=—N

where[—M..M] x [-N..N] is the lattice used for fitting.

It has been previously reported that the autocorrelation esti-
mation variance increases whightends toK or|l| tends to

L, especially whenth8 N R is low. As it can be seen in fig-
ure 4 forSNR = —10dB, phase unwrapping may causes
some problems, giving noisy estimations of the frequencies.
That is the reason why/ andN has to be chosen carefully.

3.2. Estimation algorithm

Once the estimated phase is unwrapped, parameters of the
expected plane; andw, from eq. (7) have to be estimated.

We propose in this work a Least Squares estimation (LS) of
those parameters, by plane fitting the estimated autocorrela-
tion phase. This can be done by minimizing the following
equation :

-L+1 L

-K+1 0

Fig. 2. Estimated phase obtained from the autocorrelation
of the signal which real part is depicted on figure 1.

2. The estimated autocorrelation is by nature real for **
k =1=0. Thereforep(0,0) = ¢(0,0) = 0.

3. Shannon’s theorem assures that jumps between con-
secutive theoretical phase of the lattice are lower than
.

4. The neare(0,0) is (k, 1), the lower is the autocorre-
lation estimation variance.

Therefore, a very simple algorithm for the 2-D phase un-
wrapping is to begin from the center of the autocorrelation
function i.e. ¢(0,0). The middle column¥ = 0) is un-
wrapped from its center, and then, each row is unwrapped
from this centered column. Figure 3 shows the unwrapped
phase from figure 2.

-L+1
-K+1 0 K-1

Fig. 4. Unwrapped phase from-al0dB, 30 x 30 image.

15

By differentiating eq. (8) according to; andw-, we
0 find

M N

D> k[w1k+w21 ¢(k,l)] -
k=—MI=—N

M N

SO [wlk + ol — ¢(k,l)] =0.

k=—MI=—N

(9)

After simplifications, estimated parameters become

)
o 6
1T MM+ 1)(M + 1)(2N + 1) kZ:l_Z ko(k. )
-K+1 0 K-1 < 6 N "
Fig. 3. Unwrapped phase from figure 2. Wy = NeN 1 DN+ @M+ D) lz;kz;Ml(ﬁ (k,1).
\
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Finally, frequencies estimations are given by has a linear phase. The proposed estimator is based on a
A . wy plane fitting of the estimated autocorrelation phase. More-
h= o and fo= DEE (10) over, the algorithm has a low complexity and can be used
for real time applications.

4. PERFORMANCES Performances of this algorithm have been studied thanks
to Monte Carlo simulations in the same conditions used by
In order to study performances of this 2-D frequency esti- Kay in [8]. We show the satisfactory behavior of our fre-
mator, Monte Carlo simulations have been performed. Esti- quency estimator, which appears to be unbiased and with a
mations given by our plane fitting estimator have been com- variance close to Cramer Rao bounds. This plane fitting al-
pared with the frequency estimator proposed by Kay in [8], gorithm has then been applied to smaller imagdés< 16),

for the following parameters : giving accurate estimations. These findings suggest that this
« 6 uniformly distributed info...2x], ;’:il:)gnolrlthm can be used for short 2-D term frequency estima-
e K =L =30,
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5. CONCLUSION

This paper is concerned with the problem of 2-D frequency
estimation on complex sinusoid embedded in a white Gaus-
sian additive noise. The proposed algorithm has been de-
rived from the autocorrelation of the complex sinusoid which
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