A NEW ALGORITHM FOR RETRIEVAL OF 2D EXPONENTIALS

Yibin Zheng
Department of Electrical and Computer Engineering
University of Virginia, Charlottesville, VA 22904

ABSTRACT

A novel parametric algorithm that can retrieve roughly
0.25MN 2-D exponentials or 0.343MN 2-D harmonics
from an M x N array data is presented. This compares
favorably with most existing algorithms which can
retrieve only order max(M, N) exponentials or harmonics.
The algorithm is not Fourier resolution limited, and
requires neither searching in 2-D space nor 2-D
polynomia rooting. A specific example of retrieving 4
harmonics from a 3x3 array is developed in detaill and
numerical performance is demonstrated.

1. INTRODUCTION

Identification and determination of parameters of two-
dimensional harmonics are of specia interest in signal
processing theory. The most prominent application of such
is joint azimuth/elevation angle estimation in direction of
arrival (DOA) problems using an antenna array. Other
applications include joint delay/Doppler estimation in
radar signal processing and wireless communications, and
edge locdization in image processing. Classical non-
parametric methods based on 2-D Fourier transform can
be effective, efficient and robust if the data sample size is
much larger than the number of harmonics to be retrieved.
For small size data samples such as typical in array
processing, Fourier based methods suffer from resolution
limit as well as limits on the number of retrievable
harmonics. Many super-resolution techniques have been
developed as extensions of 1-D counterparts, including the
autoregressive method, maximum entropy method,
minimum variance, MUSIC method, Pisarenko’s method
[1], etc. They either require the search of maximain 2-D
space, or finding roots of a 2-D polynomial, both of which
are computationally expensive. There aso have been
computationally affordable algorithms, each having its
own advantages and drawbacks. The state space method
cannot handle cases of common 1-D freguencies [2]. The
meatrix enhancement and matrix pencil method (MEMP)
[3] is a superior method in terms of performance and
complexity, but it can only retrieve up to min(M, N)

harmonics, where (M,N) are dimensions of the data

sample. The agorithm in [4] is formulated for retrieving
only one 2-D harmonic.

All of the agorithms mentioned above have the
maximum number of retrievable harmonics on the order of
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max(M,N) for a M x N data set. This is considerably

smaller than the equations-vs.-unknowns bound, which is
MN /3 for exponential retrieva and MN/2 for
harmonic retrieval. Recent works by Jiang and
Sidiropoulos [5][6] established that roughly MN/4
exponentials (or harmonics) are retrievable in general.
Their method is based on low rank decomposition of
multi-way arrays. In this paper we present a novel 2-D
exponential retrieval algorithm using 1-D polynomial
rooting. Our algorithm can retrieve roughly MN/4
exponentials, and if the exponentials are restricted to be
constant modulus (harmonic  retrieval), roughly
0.343MN harmonics can be retrieved, which is an
improvement over [6].

2. GENERAL FORMULATION FOR CONSISTENT
DATA

Let x{mn], OsmsM -1, 0sns<N-1 be the
(noiseless) complex data which can be modeled as the
superposition of R complex exponentials:

R-1
mn]=>cz" (1)
r=0

Here we first consider the general exponentia retrieval
problem. For harmonic retrieval we would have the

additional constraints of |z|=|w,|=1. The goa of
exponential retrieval isto determine the complex values of
{c..z,w]} diven X m,n]. The main difficulty in (1) is
the non-linear relationship between the data and { z, Wr} .
Inspired by the idea of the Prony’s method [7], we assume
that the data samples over any (P+1)xQ sub-array
(figure 1) satisfy simultaneously Q linear prediction
equations
P Q-1

> > apalXm+pn+gl =0, (2

p=09=0

0OsmsM-P-1, 0snsN-Q, 0<sy<Q-1

Then substituting (1) into (2) we obtain Q equations
P Q-1

> > alpodz’w =0, 0sy<Q-1 A3)

p=09=0
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Figure 1: Linear prediction mask

The roots of equation (3) should be { z,,w; } . Note that (3)

is a set of over-determined equations because only two
equations would be needed to solve for {z, W} . However,

since we have assumed a consistent data set, {zr,vvr}

should satisfy al Q eguations. Define a QxQ matrix
polynomial A(z) whose elements are

[A(2)], =X alpdz @

then equation (3) can be written as
Q-1
Z[A(z)]%q w'=0, 0<y<Q-1 (5
q=0

If wetreat L w,...,W? ™" asindependent variables (though

in fact they are not), then the necessary condition for
equation (5) to have anon-trivial solutionis

det[A(2)] =0 (6)
Equation (6) is an order PQ polynomial in Z. From (6)
we can determine {z} by 1-D polynomial rooting
techniques. Subsequently {w,} can be solved through
equation (5). Once we get {z,w}, the complex
amplitudes {Cr} can be found by solving the model
equation (1), whichislinearin {c} .

It remains to find the linear prediction coefficients
a,[p,d] . Equation (2) can be written in amatrix form

Xay:0

where X isa (M —P)(N-Q +1) x(P +1)Q matrix
and @, isa (P +1)Qx1 vector:

X0,0] P,Q-1]
X= : : @)
XM -P-1,N -Q] XM =L N -]
a,[0,0]
0, = :
a,[P,Q-1]

Therefore g, isanull space vector of matrix X . We may

find all null space vectors of X through procedures such
as the singular value decomposition (SVD) or OR
factorization. We must have at least Q null space vectors

to form equation (2). This condition determines the
maximum number of retrievable exponentials for a given
array size, and provides a guideline for choosing the sub-
array size P,Q. Since the rank of matrix X is equa to

the number of retrievable exponentials R, we want to find
the maximum possible rank of X . Following the matrix
rank theorem, we have the inequality (P+1)Q-R=Q,

which leads to
R<PQ (8)

On the other hand the rank of a matrix cannot be bigger
than the number of rows, therefore

R<(M -P)(N-Q+1) 9)
The values for P,Q that result in maximum rank R

would be such that the right hand sides of the inequality
congtraints (8) and (9) are about equal. This implies
M =2P,N =2Q -1 . Forlarge M,N, R, =MN/4,

consistent with the results of [5].

If we are restricted to the harmonic retrieval problem
where |7 =|w =1, then the number of rows in the data
matrix X can be doubled by including conjugated and
spatial  reversed  sub-arrays.  This is  because
z'=2Z,w" =w . From equation (3) we have

P

> atpa(z)"” (w)" =0 (10)

p=0q=0
which in turn leads to the linear prediction equation for the
conjugated and spatial reversed data samples:

P

Q-1
> > a,p.adlx{M -m-p-1LN -n-q -1] =0

p=0g=0
Hence the data matrix in (7) can be augmented to
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¥0,0] XP,Q-1]
x =| XM -P-LN-Q] M -LN -1 |(12)
xIM -1, N -1] X'[M =P -1,N -Q]
xD[P,.Q—l] >F[6,0]

Now the inequdlity in (9) is modified to
R<2(M -P)(N -Q +1)

Equating the right hand side of (8) and (12) gives
P=0.586M,Q =0.586N and R,_, =0.343MN .

(12)

We can summarize our algorithm for retrieving two-
dimensional exponentials (harmonics) as follows:

1. Choose P=0.5M, Q =0.5N . Form the data matrix
X according to (7); For harmonic retrievals, choose
P =0.586M,Q =0.586N and form matrix X
according to (11).

Obtain Q null space vectors of X, name them 0,
y=01...,Q-1;

Form the matrix polynomial A(Zz) according to (4)
and find the PQ rootsof det[A(2)] =0.

For each of the roots z solve for a non-zero vector
W, suchthat A(z )w, =0. It should be possible to
normaize w, to the form w, =[Lw,...,w*™]",
since the data are consistent.

5. Solvefor c, using equation (1).

Note that the actual number of exponentials R
determined from the rank of X is usualy smaller than
PQ, however this “over-fitting” does not harm the

algorithm. Since the data are consistent, simulation shows
that the amplitudes of extra exponentials (harmonics) are
negligible and can be excluded easily.

3. ACASE STUDY FOR HARMONIC RETRIEVAL
FROM 3X3 ARRAY

In this section we illustrate the approach developed in
section 2 using a 3 by 3 data set. We consider the problem
of harmonic retrieval. According to (8) and (12) we may

choose P =Q =2, which implies that up to four 2-D
harmonics can be retrieved. The model equation becomes

3
imnl=>czwW, m=012 n=012
r=0

and the data matrix X isformed according to (11) as:

{0,0] 01 0,21 X10 ¥1L X12]
I AL0] KLY HL2] X20 X2l X22]
X122 ¥[21 X[200 X[12] %[11 %[L0]

x[L2] X[LY X[L0] X[0,2] %[0 %[0,0]

The linear equations Xa =0 have 4 equations and 6
unknowns, therefore two linearly independent solutions
o, and @, exis. The simultaneous egquations for

determining { z,w} are then

(al0.01+a[00z+a,[0,27) +ar[10] 4 11z 4 [127)w =0
(al0.0+a[01z+a[02Z) +{a,[10 4 11z € [127)w =0
For this equation to have a non-trivial solution, we have
(o[0,01 +a,[0,11z +a,[0,2)2* ) (a,[1.0] +a,[11]z 42 ,[1,2] %)
~(a[1,0] +a [L1]z +a,[1,2]2*) ,[0,0] +a [0,1]z 4 ,[0,2] %) =0
from which we can obtain four roots z,,7,2,,7,. The

corresponding four values of W, are obtained by

__a,[0,0]+a,[0]z +a,[0,2]7

f 0'0[1,0] "‘CJ’O[]_,]_]Zr +a0[1’2]zrz , 1=0123

Finally, the frequency estimates are obtained by:
f.. =ag{z}/(2m), f,, =arg{w}/(27)

Implementing the algorithm described above, we
performed numerical simulations by generating four 2-D
harmonics with random frequencies and unit magnitudes.
Without noise, the agorithm performed as expected,
recovering all four harmonics correctly in all cases. We
then added white Gaussian noise to the model equation (1)
and study the noise performance. The Cramer-Rao bound
(CRB) of this frequency estimation problem can be
computed rather straightforwardly [3]. Note that the CRB

is a function of the frequencies f,, and f, , therefore

the noise performance is also a function of f, . and fy]r .

X,r
The following results pertain to a case where the
frequencies of the 4 harmonics are fixed at (-0.4, 0.2),
(-0.1, -0.1), (0.2, 0.3) and (0.3, -0.4).

We define the signal to noiseratio (SNR) as
4 2
2 lc]

r=1

SNR =10lo
O1o MN

0.2
First weset o =0.01,|c,| =1 (SNR=16dB). Figure 2 is a
scatter plot of frequency estimates of the 4 harmonics for
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100 noise realizations. Also plotted are ellipses associated
with the CRB.

Figure 2: Scatter plot of frequency estimates of all 4 harmonics
at 16dB SNR. The ellipses correspond to 2* CRB.

We then varied the SNR from 0 to 35dB, and for each
SNR we calculated the mean square error (MSE) of the
frequency estimates for 1000 noise redlizations. In figure
3, we plot the ratio of MSE/CRB as a function of SNR for
al 4 2-D harmonics. It is evident that the algorithm’s
performance rapidly improves as SNR increases above
20dB. The asymptotic MSE for a frequency component is
found to be between 1.2-1.5 times CRB.

4. DISCUSSIONS

As with other parametric algorithms, the algorithm
presented in this paper has certain advantages and
disadvantages compared to Fourier transform based
algorithms: it is not Fourier resolution limited; it can work
with small data sets; it is computationally expensive; and it
works well for high SNR.

Our algorithm requires rooting of an order PQ 1-D
polynomial. To retrieve the maximum number of
exponentials (harmonics) given by the equations-vs.-
unknowns bound, rooting of 2-D polynomials would be
required, since no redundant equations are available as in
(3). However, 2-D polynomia rooting is significantly
more computationally expensive.

Some extensions of this work could be sought. First,
if the number of exponentials to be retrieved is much
smaller than the bound of the algorithm MN/4, then it is
reasonable to reduce complexity by using asmaller (P, Q),
in which case the linear prediction equations will be over-
determined and a least squares solution should be sought.
Second, the technique in this paper could possibly be
generalized to higher dimensional data. We are currently
investigating these ideas.
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Figure 3: Error performance vs. CRB. Plotted are MSE/CRB vs.
SNR for all frequency components along x (top) and y (bottom).
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