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ABSTRACT 

A novel parametric algorithm that can retrieve roughly 
0.25MN 2-D exponentials or 0.343MN 2-D harmonics 
from an M x N array data is presented. This compares 
favorably with most existing algorithms which can 
retrieve only order max(M, N) exponentials or harmonics. 
The algorithm is not Fourier resolution limited, and 
requires neither searching in 2-D space nor 2-D 
polynomial rooting. A specific example of retrieving 4 
harmonics from a 3x3 array is developed in detail and 
numerical performance is demonstrated.  

1. INTRODUCTION 

Identification and determination of parameters of two-
dimensional harmonics are of special interest in signal 
processing theory. The most prominent application of such 
is joint azimuth/elevation angle estimation in direction of 
arrival (DOA) problems using an antenna array. Other 
applications include joint delay/Doppler estimation in 
radar signal processing and wireless communications, and 
edge localization in image processing. Classical non-
parametric methods based on 2-D Fourier transform can 
be effective, efficient and robust if the data sample size is 
much larger than the number of harmonics to be retrieved. 
For small size data samples such as typical in array 
processing, Fourier based methods suffer from resolution 
limit as well as limits on the number of retrievable 
harmonics. Many super-resolution techniques have been 
developed as extensions of 1-D counterparts, including the 
autoregressive method, maximum entropy method, 
minimum variance, MUSIC method, Pisarenko’s method 
[1], etc. They either require the search of maxima in 2-D 
space, or finding roots of a 2-D polynomial, both of which 
are computationally expensive. There also have been 
computationally affordable algorithms, each having its 
own advantages and drawbacks. The state space method 
cannot handle cases of common 1-D frequencies [2]. The 
matrix enhancement and matrix pencil method (MEMP) 
[3] is a superior method in terms of performance and 
complexity, but it can only retrieve up to min( , )M N  

harmonics, where ( , )M N  are dimensions of the data 

sample. The algorithm in [4] is formulated for retrieving 
only one 2-D harmonic. 

All of the algorithms mentioned above have the 
maximum number of retrievable harmonics on the order of 

max( , )M N  for a M N× data set. This is considerably 

smaller than the equations-vs.-unknowns bound, which is 
/ 3MN  for exponential retrieval and / 2MN  for 

harmonic retrieval. Recent works by Jiang and 
Sidiropoulos [5][6] established that roughly / 4MN  
exponentials (or harmonics) are retrievable in general. 
Their method is based on low rank decomposition of 
multi-way arrays. In this paper we present a novel 2-D 
exponential retrieval algorithm using 1-D polynomial 
rooting. Our algorithm can retrieve roughly / 4MN  
exponentials, and if the exponentials are restricted to be 
constant modulus (harmonic retrieval), roughly 
0.343MN  harmonics can be retrieved, which is an 
improvement over [6]. 

2. GENERAL FORMULATION FOR CONSISTENT 
DATA 

Let [ , ]x m n , 0 1m M≤ ≤ − , 0 1n N≤ ≤ −  be the 

(noiseless) complex data which can be modeled as the 
superposition of R  complex exponentials: 

1

0

[ , ]
R

m n
r r r

r

x m n c z w
−

=
=∑   (1) 

Here we first consider the general exponential retrieval 
problem. For harmonic retrieval we would have the 
additional constraints of 1r rz w= = . The goal of 

exponential retrieval is to determine the complex values of 

{ }, ,r r rc z w  given [ , ]x m n . The main difficulty in (1) is 

the non-linear relationship between the data and { },r rz w . 

Inspired by the idea of the Prony’s method [7], we assume 
that the data samples over any ( 1)P Q+ ×  sub-array 

(figure 1) satisfy simultaneously Q  linear prediction 

equations 
1

0 0

[ , ] [ , ] 0,
QP

p q

p q x m p n qγα
−

= =

+ + =∑∑  (2) 

0 1, 0 , 0 1m M P n N Q Qγ≤ ≤ − − ≤ ≤ − ≤ ≤ −
 
Then substituting (1)  into (2) we obtain Q  equations 

1
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[ , ] 0, 0 1
QP
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p q z w Qγα γ
−
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= ≤ ≤ −∑∑  (3) 
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Figure 1: Linear prediction mask 

 

The roots of equation (3) should be { },r rz w . Note that (3) 

is a set of over-determined equations because only two 
equations would be needed to solve for { },z w . However, 

since we have assumed a consistent data set, { },r rz w  

should satisfy all Q  equations. Define a Q Q×  matrix 

polynomial ( )zA  whose elements are 

[ ] ,
0

( ) [ , ]
P

p

q
p

z p q zγγ α
=

=∑A  (4) 

then equation (3) can be written as 

[ ]
1

,
0

( ) 0, 0 1
Q

q

q
q

z w Qγ γ
−

=

= ≤ ≤ −∑ A  (5) 

If we treat 11, , , Qw w −…  as independent variables (though 

in fact they are not), then the necessary condition for 
equation (5) to have a non-trivial solution is 

[ ]det ( ) 0z =A   (6) 

Equation (6) is an order PQ  polynomial in z . From (6) 

we can determine { }rz  by 1-D polynomial rooting 

techniques. Subsequently { }rw  can be solved through 

equation (5). Once we get { },r rz w , the complex 

amplitudes { }rc  can be found by solving the model 

equation (1), which is linear in { }rc .  

It remains to find the linear prediction coefficients 
[ , ]p qγα . Equation (2) can be written in a matrix form 

γ =Xα 0  

where X  is a ( )( 1) ( 1)M P N Q P Q− − + × +  matrix 

and γα  is a ( 1) 1P Q+ ×  vector: 

[0,0] [ , 1]

[ 1, ] [ 1, 1]

x x P Q

x M P N Q x M N

− 
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Therefore γα  is a null space vector of matrix X . We may 

find all null space vectors of X  through procedures such 
as the singular value decomposition (SVD) or QR 
factorization. We must have at least Q  null space vectors 

to form equation (2). This condition determines the 
maximum number of retrievable exponentials for a given 
array size, and provides a guideline for choosing the sub-
array size ,P Q . Since the rank of matrix X  is equal to 

the number of retrievable exponentials R , we want to find 
the maximum possible rank of X . Following the matrix 
rank theorem, we have the inequality ( 1)P Q R Q+ − ≥ , 

which leads to 

R PQ≤   (8) 

On the other hand the rank of a matrix cannot be bigger 
than the number of rows, therefore  

( )( 1)R M P N Q≤ − − +   (9) 

The values for ,P Q  that result in maximum rank R  

would be such that the right hand sides of the inequality 
constraints (8) and (9) are about equal. This implies 

2 , 2 1M P N Q= = − . For large ,M N , max / 4R MN≈ , 

consistent with the results of [5].  

If we are restricted to the harmonic retrieval problem 

where 1z w= = , then the number of rows in the data 

matrix X  can be doubled by including conjugated and 
spatial reversed sub-arrays. This is because 

1 * 1 *,r r r rz z w w− −= = . From equation (3) we have 

( ) ( )
1 ( ) ( )* *

0 0

[ , ] 0
QP M p N q

r r
p q

p q z wγα
− − −

= =

=∑∑   (10) 

which in turn leads to the linear prediction equation for the 
conjugated and spatial reversed data samples: 

1

0 0

[ , ] [ 1, 1] 0
QP

p q

p q x M m p N n qγα
−

∗

= =

− − − − − − =∑∑  

Hence the data matrix in (7) can be augmented to 

• • • • ∗ ∗
• • • • ∗ ∗
• • • • ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

Q

N

1P +

M
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Now the inequality in (9) is modified to 

2( )( 1)R M P N Q≤ − − +   (12) 

Equating the right hand side of (8) and (12) gives 
0.586 , 0.586P M Q N= =  and max 0.343R MN≈ .  

We can summarize our algorithm for retrieving two-
dimensional exponentials (harmonics) as follows: 

1. Choose 0.5 , 0.5P M Q N= = . Form the data matrix 

X  according to (7); For harmonic retrievals, choose 
0.586 , 0.586P M Q N= =  and form matrix X  

according to (11). 
2. Obtain Q  null space vectors of X , name them γα , 

0,1, , 1Qγ = −… ; 

3. Form the matrix polynomial ( )zA  according to (4) 

and find the PQ  roots of [ ]det ( ) 0z =A .  

4. For each of the roots rz  solve for a non-zero vector 

rw  such that ( ) 0r rz =A w . It should be possible to 

normalize rw  to the form 1 T[1, , , ]Q
r r rw w −=w … , 

since the data are consistent. 
5. Solve for rc  using equation (1). 

Note that the actual number of exponentials R  
determined from the rank of X  is usually smaller than 
PQ , however this “over-fitting” does not harm the 

algorithm. Since the data are consistent, simulation shows 
that the amplitudes of extra exponentials (harmonics) are 
negligible and can be excluded easily. 

3. A CASE STUDY FOR HARMONIC RETRIEVAL 
FROM 3X3 ARRAY 

In this section we illustrate the approach developed in 
section 2 using a 3 by 3 data set. We consider the problem 
of harmonic retrieval. According to (8) and (12) we may 
choose 2P Q= = , which implies that up to four 2-D 

harmonics can be retrieved. The model equation becomes 
3

0

[ , ] , 0,1, 2, 0,1,2,m n
r r r

r

x m n c z w m n
=

= = =∑  

and the data matrix X  is formed according to (11) as: 
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x x x x x x

x x x x x x

x x x x x x

x x x x x x

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

 
 
 =
 
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 

X
 

The linear equations =Xα 0  have 4 equations and 6 
unknowns, therefore two linearly independent solutions 

1α  and 2α  exist. The simultaneous equations for 

determining { },z w  are then 

( ) ( )
( ) ( )

2 2
0 0 0 0 0 0

2 2
1 1 1 1 1 1
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z z z z w

z z z z w

α α α α α α

α α α α α α

+ + + + + =

+ + + + + =
For this equation to have a non-trivial solution, we have 
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2 2
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from which we can obtain four roots 0 1 2 3, , ,z z z z . The 

corresponding four values of rw  are obtained by 

2
0 0 0

2
0 0 0

[0,0] [0,1] [0,2]
, 0,1,2,3

[1,0] [1,1] [1,2]
r r

r
r r

z z
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α α α
α α α

+ += − =
+ +

 
Finally, the frequency estimates are obtained by: 

 { } { }, ,arg /(2 ), arg /(2 )x r r y r rf z f wπ π= =  

Implementing the algorithm described above, we 
performed numerical simulations by generating four 2-D 
harmonics with random frequencies and unit magnitudes. 
Without noise, the algorithm performed as expected, 
recovering all four harmonics correctly in all cases. We 
then added white Gaussian noise to the model equation (1) 
and study the noise performance. The Cramer-Rao bound 
(CRB) of this frequency estimation problem can be 
computed rather straightforwardly [3]. Note that the CRB 

is a function of the frequencies ,x rf  and ,y rf , therefore 

the noise performance is also a function of ,x rf  and ,y rf . 

The following results pertain to a case where the 
frequencies of the 4 harmonics are fixed at (-0.4, 0.2),      
(-0.1, -0.1), (0.2, 0.3) and (0.3, -0.4). 

We define the signal to noise ratio (SNR) as  
4

2

1
10 2

SNR 10log
r

r

c

MNσ
==
∑

 

First we set 2 0.01, 1rcσ = =  (SNR=16dB). Figure 2 is a 

scatter plot of frequency estimates of the 4 harmonics for 
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100 noise realizations. Also plotted are ellipses associated 
with the CRB. 
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Figure 2: Scatter plot of frequency estimates of all 4 harmonics 
at 16dB SNR.  The ellipses correspond to 2*CRB. 

We then varied the SNR from 0 to 35dB, and for each 
SNR we calculated the mean square error (MSE) of the 
frequency estimates for 1000 noise realizations. In figure 
3, we plot the ratio of MSE/CRB as a function of SNR for 
all 4 2-D harmonics. It is evident that the algorithm’s 
performance rapidly improves as SNR increases above 
20dB. The asymptotic MSE for a frequency component is 
found to be between 1.2-1.5 times CRB. 

4. DISCUSSIONS 

As with other parametric algorithms, the algorithm 
presented in this paper has certain advantages and 
disadvantages compared to Fourier transform based 
algorithms: it is not Fourier resolution limited; it can work 
with small data sets; it is computationally expensive; and it 
works well for high SNR. 

Our algorithm requires rooting of an order PQ 1-D 
polynomial. To retrieve the maximum number of 
exponentials (harmonics) given by the equations-vs.-
unknowns bound, rooting of 2-D polynomials would be 
required, since no redundant equations are available as in 
(3). However, 2-D polynomial rooting is significantly 
more computationally expensive. 

Some extensions of this work could be sought. First, 
if the number of exponentials to be retrieved is much 
smaller than the bound of the algorithm MN/4, then it is 
reasonable to reduce complexity by using a smaller (P, Q), 
in which case the linear prediction equations will be over-
determined and a least squares solution should be sought. 
Second, the technique in this paper could possibly be 
generalized to higher dimensional data. We are currently 
investigating these ideas. 
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Figure 3: Error performance vs. CRB. Plotted are MSE/CRB vs. 
SNR for all frequency components along x (top) and y (bottom). 
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