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ABSTRACT

This paper presents an unsupervised classification
algorithm for hyperspectral remotely sensed imagery
based on blind source separation. Since the area
covered by a single pixel in such an image is very
large, the reflectance of a pixel isthe mixture from all
the materials resident in this area. A contrast function
consisting of the mutual information minimization
and orthogonality among the outputs, is defined to
separate the assumed linear mixture so as to achieve
soft classification. In order to reduce the
computational complexity, a Neyman-Pearson
detection theory based eigen-thresholding method is
used to estimate the number of classes, followed by a
band selection technique to select smaller number of
bands used in the learning algorithm. The preliminary
result using an AVIRIS experiment demonstrates the
feasibility of the proposed agorithm.

I. INTRODUCTION

Hyperspectral remote sensing has been received
lots of interest in recent years due to the fact that its
very high spectral resolution provides the potentia in
accurate material identification. Because the area
covered by a single pixe is very large (typicaly
several square meters for the data acquired by an
airborne sensor and several hundred square meters for
the data acquired by a spaceborne sensor), the pixel
reflectance is a mixture from all the materials resident
in this area. So in Hyperspectral image processing we
deal with mixed pixels instead of pure pixels as in
ordinary digital image processing. One of the major
difficulties of hyperspectral image processing is the
spectral signature variability. Materials can be
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theoretically  identified by  their  spectra
characteristics (i.e., spectral signature). However, the
variability of spectral signature of the same material
is profound in remote sensing applications due to the
variations in amospheric conditions, sensor noise,
material composition, surrounding materials, etc. So
hyperspectral image processing is very chalenging in
that the spectral signature of a mixed pixel does not
correspond to any single well-defined material. Such
complexity requires us to develop efficient
unsupervised agorithms that do not depend on any
prior information about material spectral signatures.

Quite a few techniques have been proposed in
hyperspectral image classification. But most of them
are supervised methods, i.e., the number of classes
and their spectral signatures are known a priori. In
this paper an unsupervised technique is to be
proposed without assuming any prior information of
the image scene. Here the classification problem is a
soft classification because the abundance fractions of
al the materialsin a pixel area are to be estimated in
the classified images, which described the
distributions of these materials in the image scene. If
we assume the mixing processis linear, it actually isa
linear unmixing problem, which can be solved by a
technique of blind source separation. Severd
researchers have proposed such methods in [1-4]. We
will introduce a different contrast function and
simplify the computational complexity by taking
advantage of our previous research results.

II. CONTRAST FUNCTION
In the linear mixture model [5], the mixing

process is assumed linear. If these are p materias
present, a pixel vector r can be represented as
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r=Ma +n (1)

where M =|_ml,m2,---,mpJ is the materia signature

matrix and m; is the spectral signature of the i-th
material, az(alaz---ap)Tis the abundance vector

and e, is the abundance of the i-th material contained

in pixel r, n isthe noise term.

We assume that the p abundance fractions in a
pixel are mutually statistically independent and at
most one of them is Gaussian distributed. Then the
classification based on linear unmixing can be viewed
as a blind source separation problem. A solution to
this kind of problem can be obtained via independent
component anaysis (ICA). The goa is to find a
separating matrix W such that the elements in
y=0=Wr are as independent as possible. The

mutual information is chosen as the measure of
independence,
n
=ZH(yi)—H(y) 2)

(y))J is the joint entropy of

—Ellog(p, (v;)) is the
entropy of y;. The learning algorithm for W searching
isto solve a constrained problem,

where H(y)=—E[Iog(py
random vector y, H(y,)=

minimize 1(y) subject to E(ny)=I (3)

where 1 is the identity matrix. So the objective
function isformulated as
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where B isapenaty term. An optimal W is such that
Eqg. (4) can be minimized.

When W is a square matrix, i.e., the number of
materials n in the image scene equals the number of
bandsL, p,(y) and p, (r) can berelated as

p, (r)
dy|
or

p, (v)= (5)
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where is the determinant of the Jacobian matrix
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Therefore, H(y) can berelated withH (r) as[6]

H(y)=

Taking derivative with respect to W yields

Efl og|WI} +H(r). (6)
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The computation of H(y,) needs to use the pdf

of y; which is unknown. One way to tackle this
problem is to approximate it using Gram-Charlier
expansion as [7]

H(yi)=1|09(2fE -

e+ L (o)

where ki =m},, ki =m}, -3 and m_ = E[(yi )kJ isthe
k-th moment of y;. We know
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Asfor the second termin Eq. (4),
a.iﬁ(E(yiyj)—éij)z n
e o :ZBZ(E(WS)-QS)E(WJ
(11)

Based on Egs. (7), (10) and (11), we can easily
calculate the learning update for W as
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W =-n % (12)

where nj isapositive learning rate.

ITII. ESTIMATION OF THE NUMBER OF
CLASSES

The algorithm proposed in Section (2) is very
time consuming because the size of W is very large.
For instance, for a Hyperspectra image with 210
bans, a 210x210 separating matrix must be estimated.
A possible way to reduce the size of W is to estimate
the number of classes, i.e, the number of outputs,
which in general is much smaller than the band
number. We apply an eigen-thresholding technique in
[8] to do the estimation.

Let {A;2A,2-2A} and {A, 24,222} be
two sets of eigenvalues generated by sample
correlation matrix R, and sample covariance
matrix K, , respectively. By assuming that signal
sources are nonrandom unknown positive constants
and noise is white with zero mean, we can expect that

A>A for I=1--p and A=A for
|=p+1--,L, where A, =2 +0? for 1=1--,p
and A, =A =g?forl=p+1-L.

In order to determine the p, a binary hypothesis
problem can be formulated as follows.

Versus

for 1 =1,---,L (13)

where the null hypothesis H, and the alternative

hypothesis H; represent the case that the correlation-
eigenvalue is equa to its corresponding covariance
eigenvalue and the case that the correlation-
eigenvalue is greater than its corresponding
covariance eigenvalue respectively. In other words,
when H, istrue (i.e, H, fails), it implies that there
is a signal contributing the correlation-eigenvalue in
addition to noise since noise eigenvaluesin R ,, are

equal to the corresponding eigenvaluesin K, .

We can model the difference z between each
pair of eigenvalues, /T, and A, under hypotheses H |,
and H; as Gaussian random variables by the
asymptotic conditional probability densities given as
po(z,)DN(O,afl) and pl(zl)DN(uI 0} ) where
the mean p, isan unknown constant and the variance

202 2)2 .
O'i DWI +WI . Then decision rule becomes

Choose H; if z =T,
Choose Hy if z <T, (14

where the eigen-threshold 7, can be determined by
using the Neyman-Pearson criterion so that the
probability of correctly choosing H; is maximized
subject to a designated upper bound on the false
alarm probability p;. 1, isnot fixed, but a function

of eigenvalue index i. An estimated number of classes
p can be obtained by counting the number of times
when H, istrue.

IV. BAND SELECTION

After the number of classes p is estimated, we
have to select p band images from original data cube
so that a square matrix W of size pxp can be
constructed. We apply a joint band prioritization and
band decorrelation approach in [9] to select band
images to be used in the learning agorithm.

Let X be estimated noise covariance matrix and

F is anoise-adjusted operator such that
F'Z F=I. (15)

Each pixel vector r is adjusted by F'r. Then the
variance of each adjusted band image is equivalent to
the SNR in this band. The resulting band images are
reordered based on their SNRs. The resulting

prioritized image set is denoted as Q ={Bj} Ij:l’ where

B,2B,>---2B, and > is the notation of priority
order. Thefirst p most distinct images are selected by
comparing the divergence of each pair of band images
inQ.
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V. EXPERIMENT

The data used in the experiment is the 224-band
AVIRIS image shown in Fig. 1. It is a scene of
200 x 200 over the Lunar Crater Volcanic Field in
Northern Nye County, Nevada. First, the method in
Section 1l was applied to estimate the number of
different materials, which was five. Second, five band
images were selected using the approach described in
Section 1V. Then the algorithm in Section Il was
operated to find the optimal separating matrix W. The
final classified images are shown in Fig. 2. Compared
to the prior information, they correspond to “playa
lake”, “shade’, “cinder”, “vegetation” and “rhyolite”,
respectively.

Figure 1: An AVIRIS image scene

Figure 2: Unsupervised classification result

VI. CONCLUSION

We introduced an unsupervised classification
algorithm based on minimizing mutual information
criterion. In order to reduce the computationa
complexity, a Neyman-Pearson detection theory
based eigen-thresholding method is used to estimate
the number of classes, followed by a joint band
prioritization and band decorrelation approach to
select the same number of bands to be used in the

proposed agorithm. The preliminary result using
AVIRIS data showsitsfeasbility.
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