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ABSTRACT 

 
This paper presents an unsupervised classification 

algorithm for hyperspectral remotely sensed imagery 
based on blind source separation. Since the area 
covered by a single pixel in such an image is very 
large, the reflectance of a pixel is the mixture from all 
the materials resident in this area. A contrast function 
consisting of the mutual information minimization 
and orthogonality among the outputs, is defined to 
separate the assumed linear mixture so as to achieve 
soft classification. In order to reduce the 
computational complexity, a Neyman-Pearson 
detection theory based eigen-thresholding method is 
used to estimate the number of classes, followed by a 
band selection technique to select smaller number of 
bands used in the learning algorithm. The preliminary 
result using an AVIRIS experiment demonstrates the 
feasibility of the proposed algorithm. 
 
 

I. INTRODUCTION 
 

Hyperspectral remote sensing has been received 
lots of interest in recent years due to the fact that its 
very high spectral resolution provides the potential in 
accurate material identification. Because the area 
covered by a single pixel is very large (typically 
several square meters for the data acquired by an 
airborne sensor and several hundred square meters for 
the data acquired by a spaceborne sensor), the pixel 
reflectance is a mixture from all the materials resident 
in this area. So in Hyperspectral image processing we 
deal with mixed pixels instead of pure pixels as in 
ordinary digital image processing. One of the major 
difficulties of hyperspectral image processing is the 
spectral signature variability. Materials can be 

theoretically identified by their spectral 
characteristics (i.e., spectral signature). However, the 
variability of spectral signature of the same material 
is profound in remote sensing applications due to the 
variations in atmospheric conditions, sensor noise, 
material composition, surrounding materials, etc. So 
hyperspectral image processing is very challenging in 
that the spectral signature of a mixed pixel does not 
correspond to any single well-defined material. Such 
complexity requires us to develop efficient 
unsupervised algorithms that do not depend on any 
prior information about material spectral signatures.  

Quite a few techniques have been proposed in 
hyperspectral image classification. But most of them 
are supervised methods, i.e., the number of classes 
and their spectral signatures are known a priori. In 
this paper an unsupervised technique is to be 
proposed without assuming any prior information of 
the image scene. Here the classification problem is a 
soft classification because the abundance fractions of 
all the materials in a pixel area are to be estimated in 
the classified images, which described the 
distributions of these materials in the image scene. If 
we assume the mixing process is linear, it actually is a 
linear unmixing problem, which can be solved by a 
technique of blind source separation. Several 
researchers have proposed such methods in [1-4]. We 
will introduce a different contrast function and 
simplify the computational complexity by taking 
advantage of our previous research results. 
 
 

II. CONTRAST FUNCTION 
 

In the linear mixture model [5], the mixing 
process is assumed linear. If these are p materials 
present, a pixel vector r can be represented as 
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 nMαr +=  (1) 
 

where [ ]pmmmM ,,, 21 L=  is the material signature 
matrix and mi is the spectral signature of the i-th 
material, ( )Tpααα L21=α is the abundance vector 
and iα is the abundance of the i-th material contained 
in pixel r, n is the noise term.  

We assume that the p abundance fractions in a 
pixel are mutually statistically independent and at 
most one of them is Gaussian distributed. Then the 
classification based on linear unmixing can be viewed 
as a blind source separation problem. A solution to 
this kind of problem can be obtained via independent 
component analysis (ICA). The goal is to find a 
separating matrix W such that the elements in 

Wrαy == ˆ  are as independent as possible. The 
mutual information is chosen as the measure of 
independence,  
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where ( ) ( )( )[ ]yy ypEH log−=  is the joint entropy of 
random vector y, ( ) ( )( )[ ]iyi ypEyH

i
log−=  is the 

entropy of yi. The learning algorithm for W searching 
is to solve a constrained problem, 

 

 minimize ( )yI  subject to ( ) Iyy =TE  (3) 
 
where I is the identity matrix. So the objective 
function is formulated as 
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where β  is a penalty term. An optimal W is such that 
Eq. (4) can be minimized. 

When W is a square matrix, i.e., the number of 
materials n in the image scene equals the number of 
bands L, ( )yyp  and ( )rrp  can be related as  
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∂  is the determinant of the Jacobian matrix 

of y with respect to r, i.e., 
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Therefore, ( )yH  can be related with ( )rH  as [6] 
 
 ( ) { } ( )rWy HEH += log . (6) 
 
Taking derivative with respect to W yields 
 

 ( )
WW

y 1=
∂

∂H . (7) 

 
The computation of ( )iyH  needs to use the pdf 

of yi which is unknown. One way to tackle this 
problem is to approximate it using Gram-Charlier 
expansion as [7] 
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where ii mk 33 = , 344 −= ii mk  and ( )[ ]k

i
i
k yEm =  is the 

k-th moment of yi. We know 
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As for the second term in Eq. (4), 
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Based on Eqs. (7), (10) and (11), we can easily 

calculate the learning update for W as 
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where η  is a positive learning rate. 
 
 

III. ESTIMATION OF THE NUMBER OF 
CLASSES 

 
The algorithm proposed in Section (2) is very 

time consuming because the size of W is very large. 
For instance, for a Hyperspectral image with 210 
bans, a 210×210 separating matrix must be estimated. 
A possible way to reduce the size of W is to estimate 
the number of classes, i.e, the number of outputs, 
which in general is much smaller than the band 
number. We apply an eigen-thresholding technique in 
[8] to do the estimation. 

Let }ˆˆˆ{ 21 Lλλλ ≥≥≥ L  and }{ 21 Lλλλ ≥≥≥ L  be 
two sets of eigenvalues generated by sample 
correlation matrix LL×R  and sample covariance 
matrix LL×K , respectively. By assuming that signal 
sources are nonrandom unknown positive constants 
and noise is white with zero mean, we can expect that 

ll λλ >ˆ  for pl ,,1 L=  and ll λλ =ˆ  for 
Lpl ,,1 L+= , where 2ˆ

lll σλλ +=  for pl ,,1 L=  
and 2ˆ

lll σλλ ==  for Lpl ,,1L+= .      
In order to determine the p, a binary hypothesis 

problem can be formulated as follows.  
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where the null hypothesis 0H  and the alternative 
hypothesis 1H  represent the case that the correlation-
eigenvalue is equal to its corresponding covariance 
eigenvalue and the case that the correlation-
eigenvalue is greater than its corresponding 
covariance eigenvalue respectively. In other words, 
when 1H  is true (i.e., 0H  fails), it implies that there 
is a signal contributing the correlation-eigenvalue in 
addition to noise since noise eigenvalues in LL×R  are 
equal to the corresponding eigenvalues in LL×K .  

We can model the difference lz  between each 
pair of eigenvalues, lλ̂  and lλ  under hypotheses 0H  
and 1H  as Gaussian random variables by the 
asymptotic conditional probability densities given as 

( ) ( )2
0 ,0

l
Nzp l λσ≅  and ( ) ( )2

1 ,
lll Nzp λσµ≅ , where 

the mean lµ  is an unknown constant and the variance 

NN
ll

l

22
2 2ˆ2 λλ

σ λ +≅ . Then decision rule becomes 

 
 Choose H1 if  llz τ≥  
 Choose H0 if  llz τ<  (14) 

 
where the eigen-threshold lτ  can be determined by 
using the Neyman-Pearson criterion so that the 
probability of correctly choosing H1 is maximized 
subject to a designated upper bound on the false 
alarm probability fp . lτ  is not fixed, but a function 
of eigenvalue index i. An estimated number of classes 
p can be obtained by counting the number of times 
when 1H  is true. 
 
 

IV. BAND SELECTION 
 

After the number of classes p is estimated, we 
have to select p band images from original data cube 
so that a square matrix W of size p×p can be 
constructed. We apply a joint band prioritization and 
band decorrelation approach in [9] to select band 
images to be used in the learning algorithm.  

Let nΣ be estimated noise covariance matrix and 
F is a noise-adjusted operator such that 

 

 IFΣF =n
T . (15) 

 

Each pixel vector r is adjusted by rFT . Then the 
variance of each adjusted band image is equivalent to 
the SNR in this band. The resulting band images are 
reordered based on their SNRs. The resulting 
prioritized image set is denoted as { } l

jjB
1=

=Ω , where 

lBBB ≥≥≥ L21  and ≥  is the notation of priority 
order. The first p most distinct images are selected by 
comparing the divergence of each pair of band images 
in Ω .   
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V. EXPERIMENT 
 

The data used in the experiment is the 224-band 
AVIRIS image shown in Fig. 1. It is a scene of 
200 × 200 over the Lunar Crater Volcanic Field in 
Northern Nye County, Nevada. First, the method in 
Section III was applied to estimate the number of 
different materials, which was five. Second, five band 
images were selected using the approach described in 
Section IV. Then the algorithm in Section II was 
operated to find the optimal separating matrix W. The 
final classified images are shown in Fig. 2. Compared 
to the prior information, they correspond to “playa 
lake”, “shade”, “cinder”, “vegetation” and “rhyolite”, 
respectively. 
 

 
 

Figure 1: An AVIRIS image scene   
 

   
 

   
 

Figure 2: Unsupervised classification result 
 
 

VI. CONCLUSION 
 

We introduced an unsupervised classification 
algorithm based on minimizing mutual information 
criterion. In order to reduce the computational 
complexity, a Neyman-Pearson detection theory 
based eigen-thresholding method is used to estimate 
the number of classes, followed by a joint band 
prioritization and band decorrelation approach to 
select the same number of bands to be used in the 

proposed algorithm. The preliminary result using 
AVIRIS data shows its feasibility. 
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