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ABSTRACT

In seismicdecovolution, blind approchesnustbe consid-
eredin situationsvherethereflectvity sequencethesource
wavelet signalandthe noisepower level are unknavn. In
the presenc®f long, nonminimum-phasesourcewavelets,
stronginterferenceof the reflectorscontributionsmake the
waveletestimatioranddecorvolutionprocedurdrom recor-
deddatacomplicated.In this paper we addresshis prob-
lem in a two stepsapproach.First, a robust but truncated
estimateof thewaveletis performedusinga standardnax-
imum likelihoodapproachThenimprovedwaveletestima-
tion is achieved by fitting an ARMA model to the initial
MA waveletby usingthe Prory algorithm.Thealgorithmic
problemof waveletinitialization is alsoaddressedSimula-
tion resultsandreal dataexperimentsshav the significant
improvementbroughtby this approach.

1. INTRODUCTION

This paperdealswith seismicdecomwolution, which aimsat
recoveringthe geologicalstructureof the undegroundsed-
imentarylayersfrom seismicdatarecords[13]. As usualy
in this kind of situation,the seismictracesaremodelledas
theoutputof afilter thatrepresentshe transmittedvavelet,
with aninputconsistingn atwo component§&aussiamix-

ture: the Gaussiarcomponentwith high variancemodels
the strongreflectivity at layersinterfaces[1]. Recorering
this sequencérom the dataenablesdetectinghelayerspo-

sitionin thesubsuréce.

In someexperimentsof practicalinterestthe waveletis
quite long [13]. In suchsituations,estimatingthe model
parametergenerallyyields a high varianceof the wavelet
estimator In this paper we proposea nev methodthat
permitsto overcomethis problemwithin the framework of
classicablind seismicdecowolutiontechniquesMore pre-
cisely, atwo stepsapproachs proposedthefirst stepyields
arobustMaximumLikelihood(ML) estimateof atruncated
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versionof the wavelet, via a StochasticExpectationMaxi-
mization(SEM) approachThen,animprovedwaveletesti-
mationis achievedby fitting an ARMA modelto theinitial
MA waveletby meansf aProry algorithm. Furthermorea
new criterionis alsoproposedor accurateestimationof the
wavelet impulseresponsamaximumposition, which is an
importantalgorithmicissuefor accuratevaveletestimation.
The paperis organizedasfollows: Section2 describeghe
datamodel,while section3 is devotedto initial estimation
of the parameterslin section4, improved wavelet estima-
tion is consideredFinally, in section5 we checkon simula-
tion andreal dataexperimentghe significantimprovement
broughtby this approachA conclusionis presentedn sec-
tion 6.

2. DATA MODEL

Theobsenedsignaly = (y)k=1,~ is of theform

L
Yk = > hilk—i + Wk, ()

i=0

whereh = (hg)r=o,r, isthewaveletfinite impulseresponse
columnvectorof lengthL, r = (rj)r=1,n is thereflectv-
ity sequenceandw = (wy)r=1,~ is the obsenationnoise
sequencewith variances?,. The reflectiity processr is
describediy a generalizedBernoulli-Gaussiaprocesq1],
characterizethy anunderlyingstatemodelq = (gx)k=0,n
with g, = 1 at high reflectvity pointsandgq; = 0 at low
reflectvity points. The correspondingeflectvity r, is dis-
tributedaccordingo azeromeanGaussiamistributionwith
varianceo? if g, = 1 orad if g, = 0,

plgr =1) =1-p(gr =0) = A @)
re ~ AN(0,07) + (1 = NN(0,53),

where X is the probability of having a reflectorat a given
positionanda? > o.
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3. INITIAL PARAMETER ESTIMATION

We addresgthe blind decorvolution problemthroughthe
classicalMaximum Lik elihoodcriterion [3] which leadsto
calculate

brrv = argmaxn(p(y|6)), ®)

where @ is the parametewvector of interest. Here, 8 =
(h,\,03,0%,02).

In fact, we arefacedto anincompletedataproblem|3,
6], wheretheincompletedataaregivenby z = (zx)r=o,n
andzy = (qx,rr). The joint probability densityis ex-
pressedy

p(y,zl0) = p(y|z,0)p(z]6). 4
As z = (q,r), it canalsobewritten
p(y,2l0) = p(y|z,0)p(r|q, 0)p(al6). (5)

Eachcomponenbdf this equationsanbe easily expressed.

As q is avectorof independenBernoulli variables,

p(a) = [] pa); (6)
k=1

with p(gx|0) = A% (1 — X\)1=%. Furthermoresincethery,
areindependent;onditionalto the variablesgy,

p(rla,8) =TTr; p(rklax. )

p(y|z,0)

N

w—her)?), (1)
= (27['0'?];,)N/Q exp _[Zk=1 Z};i TE ]
Then, up to a constantthe completelog-likelihoodis ex-
pressedy:

L(y,2l0) « —o*(y — Hr)" (y — Hr) — N.ln(03)
~o7 " Qr(z) — 05 rT (I — Q)r(2)
+2q"aln(o7 A1) + 2(N — qTq)in(og (1 = ),

8
whereQ = diag(q) andH is the convolution matrix asso-
ciatedwith h. NotethatHr = Rh, whereR is the corvo-
lution matrix associatedvith r. Then,whenthe complete
datavectorz is known, the derivation of fyry is straight-
forward; for fixed (y, z), the ML estimatorof 6 is obtained
from (8):

h =®TR)"R"y, A=N"'q"q

6, =N"'[y-Rh]|3 )
52 = rf(I-Q)r 2 _ rTQr
0 — "N—qTq ’ “1 = qTq "

where|| . ||2 representshe quadrationorm.

In practice,z is notknown. In sucha situation,a SEM
(StochasticExpectationMaximization) algorithm, involv-
ing simulation of z, can be usedto solve the estimation
problem[9]: startingfrom initial values® andz(® for
6§ andz respectiely, the SEMt" iterationis of theform

o SEstep:simulatez(?) ~ p(z|6(1)
¢ M step:estimated‘?) accordingto eq. (9).

The expressionof p(z|#¢—1)) canbefoundin [6]. In par
ticular, p(r|q, 8¢—1) is of theform (1 — gx)N (mo, 03) +
qrN'(m1,0?). In practice z canbesimulatedisinga Gibbs
samplef8]. TheGibbssampleiiterationis implementedas
follows|[6]:

Fork=1,...,N,

e Computep(gr = 1|y;z—g), wherez_y is z with re-
movedkt” entry zy, .

e Simulateu ~ Ujg 1) (UE is the uniform distribution
on E) andtake gx = 1jo p(g.=1/6,2_,)] (v) (14 isthe
index functionof A).

e simulatery, ~ (1 — qx) N (mo, 02) + qpN (m1,0%)
e updatezy: zr, = (qx,7k)-

let usremarkthatsimilar performanceesultscould ob-
tainedif the abose SEM estimationprocedureis replaced
by a Markov ChainMonte Carlo(MCMC) approactj14].

4. IMPROVED WAVELET ESTIMATION

In someseismicexperimentghe waveletimpulseresponse
h is quitelong. In suchcasesthe meansquareerror of the
estimatoiis quitelarge. In particular thelastcoeficientsof
h, which have smallvalues,arepoorly estimated.For this
reasonsearchindor a vectorh with reducedengthgener
ally enablesa goodcompromisebetweerbiasandvariance
propertiesof theestimator

However, performingthedecomwolutionwith atruncated
waveletwill generatelegradategerformancdor thereflec-
tivity sequence.

Improved ARMA(p, g) wavelet estimation In orderto
improvethedecorvolutionperformancewe assumehatthe
MA(L) wavelet model that has beenestimatedby means
of the SEM proceduredescribedn the previous sectionis
in fact a truncatedversionof the true wavelet, of length
L' > L. Thevalueof L is not muchcritical. Simply, the
ervelopeof the MA( L) impulseresponsehouldnot decay
toomuch.An efficientapproachor choosingL is described
further in the text. Since L' can be quite large in prac-
tice and, often, the wavelet hasan oscilatoryshape,t can
bemodeledefficiently asan ARMA( p, q) impulseresponse.
In orderto estimateit from theinitial MA(L) wavelet, we
proposeto usethe Prory method[2]. More precisely let-
ting h(z) representthetransferfunctionof theARMA(p, q)
modelto be estimatedye have

hz)= (> bz HA+ > az™®7 (10)

1=0,q k=0,p
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Then,thecoeficientsa = (ag) k=1, andb = (b;);=0 4 are
obtainedby minimizing thefollowing quadraticcriterion:

L' D
J(@,b) =Y 1> arhu r —bi?, (11)

=0 k=0

wherewe noteb; = 0 for I > ¢. Straightforward calcula-
tionsshow that(a, b) = argmin, , J(a, b) is givenby

a=—-(HIH)'HEV b=He1 a’|” (12)

where
[ ho 0 0
h ho 0
Hy = ) .
L hqg hg—1 hg—p
hg hg—1 -+ hgpt1 (13)
hg—1 hg_ .
o=
L ha hq—l hN—q
A% :[hq+1,...,h1\]] ,N—qg>p.

In orderto estimatethe respectre ordersp andq of the
AR andof the MA parts,we usea Kurtosismaximization
criterion[10].

Initial MA model order selection Now, let usexplain
how thelength L of theinitial M A(L) waveletcanbe cho-
sen. Denotingh; (i = Iy, ...,1) the estimatedwavelet of
lengthi and by, = (o — Iy — 1)~* 3%, h;, we note
MSE; =|| h;—h,, ||2. ComparingMSE = (MSAE,-),-:ll,l2
andMSE = (MSEi)izll,lzi where M SE; = ||hz - h”g
(seeFigure4),shonvsthatagoodchoicefor L is obtainedby
consideringhe minimumof MSE.

Initialization It is well known that the non-minimum
phasestructureof the waveleth malkesits estimationcom-
plicated.In particularthewaveletestimatioris notrobustto
initialization. A simulatedannealingversionof the SAEM
algorithm could be usedto overcomethis problem[11].
Here,we proposeanalternatve deterministiqprocedurdor
initializing the MA( L) waveletestimate As in [11], we ini-
tialize h with thevectorh(® (i = 1,..., k;) thathas0 en-
tries,exceptthei*” one,whichis equalto 1, andwe perform
the decorvolution for eachi. Now, let C; = 1 if ﬁi is in-
creasingat the origin andC; = —1 if it decreasest the
origin. It canbe checledthatC = (C;)i=, k., Changes
of signat valuesof ¢ correspondindo the true waveletlo-
cal optima(Figure3). Theretainedsolutionis the onethat
maximizesthe Kurtosisof estimatedreflectvity & at such
points.

Deconvolution Whenh hasbeenrestimatedthelaststep
consistsn adecowolutionviaanMPM approachihatyields
thefinal estimateof thereflectivity sequencé§l4].

5. RESULTS

In this section,we presentan examplefor simulatedand
realdata. Figure 1 and2 representhe simulatedreflectiv-

ity andobsenation (o2 = 1.0°%4, A = 0.1, 02 = 104,

o? = 0.1). The true wavelet and the function C intro-

ducedin the previous sectionaregivenin Figure 3, while

MSE andMSE aregivenin Figure4. Table1 andFigure
3 shaw that the maximum positionis correctly recovered
with the proposedorocedure Figure5 showvs theimprove-
mentbroughtby the MA truncatedwavelet + ARMA ex-

tensionmodelizationcomparedo a directestimationof the
full lengthwavelet. Figures6 to 9 shav theresultsobtained
for realdata(Zaiangocampaign/fremer[13]). We getre-
spectiely || y — hx# ||,= 2.3and0.93for theMA(L’) and
MA(L)+ARMA(p, q) waveletsestimateswhich shows the
higherdecotvolution capabilityof the proposednethod.
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Figurel: simulated
reflectvity sequence.

Figure 2. simulated noisy
seismicdata.SNR=10dB.

[¢]
710 0 = 20 20 2 50 15 20 25 30 35 40 45
SAMPLE length

Figure3: - -“true wavelet ~ Figure4:’- -: MSE,

P OF "...".MSE.
maximumposition 4 9 12 16
candidates(Fig3)

kurtosis 0.0079| 0.0351| 0.0217| 0.0070

Tablel: estimatedkurtosisat change®f C.
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Figure5: estimatedvaveletfor SNR=10dB.
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Figure6: registeredseismictracen®602.
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Figure9: estimatedvavelet.
[13]
6. CONCLUSION
[14]

In thispaperwe have proposednew approacHhor blind es-
timationof long impulserespons@ndnon-minimumphase
wavelets.

I - 436

7. REFERENCES

J.M.Mendel. "Maximum-likelihood decorvolution:
a journgy into model-basedsignal processing”.
springer-Verlag,1990.

Th. Chonavel. "Statistical signal processingMod-
elling andestimation”. springer-Verlag, 2002.

A.P.Dempster N.M.Laird and D.B.Rubin. "Maxi-
mum likelihoodfrom incompletedatavia the EM al-
gorithm”.  Journal of the Royal Satistical Society
Ser.,vol.B-39:1-38,1977.

A.E. GelfandandA.F.M. Smith.”Sampling-baseap-
proachego calculatingmaminal densities”. Journal
Amer. Satist. Assoc., 85(410):398—4091990.

G. GiannakisandJ.M. Mendel.”ldentificationof non-
minimumphasesystemsisinghigherorderstatistics”.
IEEE Trans. on Acoustic Speech and Signal Process-
ing, 37:360-3771989.

M. Lavielle. "A stochasticalgorithmfor parametric
and non-parametri@stimationin the caseof incom-
pletedata”. Sgnal Processing,vol.42,pp.3-17,295.

C.P Robert."The bayesiarchoice”. Soringer-Verlag,
New-York, 1994.

S.Geman,D.Geman. "Statistic relaxation, Gibbs
distribution and the bayesian restoration of im-
ages”. |[EEE trans.On Pattern Analysis and Machine
Intelligence,9:721-741,184.

G.CeleuxandJ.Diebolt."A stochasti@pproximation
type EM algorithmfor themixtureproblem”. Sochas-
tics and Sochastics Reports, 22:747-7611989.

M.Boumahdi. "Blind identification using the kur-
tosis with applications to field data”. Sgnal
Processing,48(3):205-216,29%.

M. Lavielle and E.Moulines. "A SimulatedAnneal-
ing VersionOf the EM Algorithm for non-Gaussian
decowolution”.  Satistics and Computing,7:229-
236,1997.

D.Donoho, "On minimum entropy decowolution”,
Applied time seriesanalysis |1, Academic Press, 1981,
pp.565-609.

PFargy, "systtmed’acquisitionde sismiquemarine”
ESSR4 campaign Report, DNIS/ESI/ENS/DTI/99-
007,lfremerdec.1999.

0O.Rosec,J.M.BoucherB.Nsiri, Th.Chonael, “Blind
marineseismicdecorvolution usingstatisticaMCMC
methods”,submittedto | EEE Oceanic Engineering.




