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ABSTRACT

In seismicdeconvolution,blind approchesmustbeconsid-
eredin situationswherethereflectivity sequence,thesource
wavelet signalandthe noisepower level areunknown. In
thepresenceof long,nonminimum-phase,sourcewavelets,
stronginterferenceof the reflectorscontributionsmake the
waveletestimationanddeconvolutionprocedurefromrecor-
deddatacomplicated.In this paper, we addressthis prob-
lem in a two stepsapproach.First, a robust but truncated
estimateof thewavelet is performedusinga standardmax-
imum likelihoodapproach.Thenimprovedwaveletestima-
tion is achieved by fitting an ARMA model to the initial
MA waveletby usingtheProny algorithm.Thealgorithmic
problemof waveletinitialization is alsoaddressed.Simula-
tion resultsandreal dataexperimentsshow the significant
improvementbroughtby this approach.

1. INTRODUCTION

Thispaperdealswith seismicdeconvolution,whichaimsat
recoveringthegeologicalstructureof theundergroundsed-
imentarylayersfrom seismicdatarecords[13]. As usualy
in this kind of situation,theseismictracesaremodelledas
theoutputof a filter thatrepresentsthetransmittedwavelet,
with aninputconsistingin atwo componentsGaussianmix-
ture: the Gaussiancomponentwith high variancemodels
the strongreflectivity at layersinterfaces[1]. Recovering
thissequencefrom thedataenablesdetectingthelayerspo-
sition in thesubsurface.

In someexperimentsof practicalinterestthewavelet is
quite long [13]. In suchsituations,estimatingthe model
parametersgenerallyyields a high varianceof the wavelet
estimator. In this paper, we proposea new methodthat
permitsto overcomethis problemwithin the framework of
classicalblind seismicdeconvolutiontechniques.Morepre-
cisely, atwo stepsapproachis proposed:thefirst stepyields
arobustMaximumLikelihood(ML) estimateof a truncated
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versionof thewavelet,via a StochasticExpectationMaxi-
mization(SEM) approach.Then,animprovedwaveletesti-
mationis achievedby fitting anARMA modelto theinitial
MA waveletby meansof aProny algorithm.Furthermore,a
new criterionis alsoproposedfor accurateestimationof the
wavelet impulseresponsemaximumposition,which is an
importantalgorithmicissuefor accuratewaveletestimation.
The paperis organizedasfollows: Section

�
describesthe

datamodel,while section � is devotedto initial estimation
of the parameters.In section � , improvedwavelet estima-
tion is considered.Finally, in section� wecheckonsimula-
tion andrealdataexperimentsthesignificantimprovement
broughtby this approach.A conclusionis presentedin sec-
tion � .

2. DATA MODEL

Theobservedsignal ���	��

����������� � is of theform


���� �� � ��� �
��! �#" �%$'& �)( (1)

where*+�,� � � � �-���.� � is thewaveletfinite impulseresponse
columnvectorof length / , 01�2� ! � � �-�3��� � is the reflectiv-
ity sequence,and 45�6� & � � �-���-� � is theobservationnoise
sequence,with variance7�89 . The reflectivity process0 is
describedby a generalizedBernoulli-Gaussianprocess[1],
characterizedby anunderlyingstatemodel :;�<�>=.���?�-���.� � ,
with =.�+�A@ at high reflectivity pointsand =#���CB at low
reflectivity points. Thecorrespondingreflectivity

! � is dis-
tributedaccordingto azeromeanGaussiandistributionwith
variance7�8� if =.�D�	@ or 7�8� if =#�E�FB ,G �>=.�D�H@I� �<@KJ G �>=.�D�FB��L�NM! �DO M
P<��BQ(?7�8� � $ ��@KJRM%�SP<�>B)(T7�8� ��( (2)

where M is the probability of having a reflectorat a given
positionand 7 8�EU 7 8� .
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3. INITIAL PARAMETER ESTIMATION

We addressthe blind deconvolution problemthrough the
classicalMaximumLikelihoodcriterion [3] which leadsto
calculate VWYX[Z �N\�]T^L_[\Y`acb�d � G �S�fe W ����( (3)

where
W

is the parametervector of interest. Here,
W ���*f(TMg(?7�8� (?7�8� (?7�89 � .

In fact,we arefacedto an incompletedataproblem[3,
6], wherethe incompletedataaregivenby hi�C��jY���?�-���.� �
and jY�,�k��=#�l( ! ��� . The joint probability density is ex-
pressedby G ��� (?h%e W �f� G �S�fe h)( W � G ��h%e W ��m (4)

As hn�,��:o(?0�� , it canalsobewrittenG �S� (Thpe W �f� G ���fe h)( W � G ��0)e :o( W � G ��: e W �-m (5)

Eachcomponentof this equationscanbeeasilyexpressed.
As : is a vectorof independentBernoulli variables,

G ��:q� � �r�-��� G ��= � �-( (6)

with G �>=.�)e W �s�<Mptvu)�w@xJyM%� �-" tvu . Furthermore,sincethe

! �
areindependent,conditionalto thevariables=.�G �S0)e :o( W �z�|{ ��-��� G �

! �)e =.�}( W �G �S�~e hQ( W �k� �� 8T���Y��Q���)� �L� `l�DJ��v� �u��}� ��� u "��Y�?� u � � �8T� �� � m (7)

Then,up to a constant,the completelog-likelihoodis ex-
pressedby:/��S� (Thpe W ���	Jx7 " 89 ���;JR��0Y�������;J���0��oJR��m bSd �>7�89 �Jx7 " 8� 0I�s� 0l��h��oJR7 " 8� 0I�¡��¢�J'�£�w0l��h
�$ � :�� : b�d ��7 "q�� M � � $ � �>�2J�:�� :�� bSd �>7 "��� �w@KJ¤Mp�?�-(

(8)
where �¥�H¦l§¨\�^p�>:q� and � is theconvolutionmatrix asso-
ciatedwith * . Notethat ��0©�«ªi* , where ª is theconvo-
lution matrix associatedwith 0 . Then,whenthe complete
datavector h is known, the derivation of

VW X£Z
is straight-

forward;for fixed �S� (Th
� , theML estimatorof
W

is obtained
from (8): V* �	��ªi� ªi� "�� ªi�L��(D¬Mi�F� "q� :��f:¬7�89 �F� "��E­ ��JRª

V
* ­ 88¬7�8� �¯®�° �²± "�³ � ®��"%´ ° ´ ( ¬7�8� � ®�° ³ ®´ ° ´ m

(9)

where ­ m ­ 8 representsthequadraticnorm.
In practice,h is not known. In sucha situation,a SEM

(StochasticExpectationMaximization) algorithm, involv-
ing simulationof h , can be usedto solve the estimation
problem[9]: startingfrom initial values

W � � � and h � � � forW
and h respectively, theSEM µ·¶ � iterationis of theform

¸ SEstep:simulateh �
� � O G ��h%e W �

� "q� � �¸ M step:estimate
W � � � accordingto eq.(9).

The expressionof G �>hpe W �
� "�� � � canbe found in [6]. In par-

ticular, G ��0le :o( W �
� "q� � � is of theform �w@�J'=.����P<�S¹º�
(T7�8� � $=.��P<�S¹;�Y(T7�8� � . In practice,h canbesimulatedusingaGibbs

sampler[8]. TheGibbssampleriterationis implementedas
follows [6]:
For »[�<@
(¼m.m¼m�(T� ,¸ ComputeG ��=#�1�½@�e � ¾?h)"��¿� , where hl"�� is z with re-

moved » ¶ � entry jI� .¸ Simulate À OÂÁsÃ �.� �·Ä (Á Å is the uniform distribution
on Æ ) andtake =#�£� 1I Ã �¼� Ç � tvu �3��È a � É.Ê u � Ä �SÀ�� (1I Ë is the
index functionof Ì ).¸ simulate

! �DO �w@KJR= � ��P<�S¹ � (T7�8� � $ = � P<�S¹ � (T7�8� �¸ updatejY� : jI�D�	��=.�)( ! ��� .
let usremarkthatsimilar performanceresultscouldob-

tainedif the above SEM estimationprocedureis replaced
by a Markov ChainMonteCarlo(MCMC) approach[14].

4. IMPROVED WAVELET ESTIMATION

In someseismicexperimentsthewavelet impulseresponse* is quite long. In suchcases,themeansquareerrorof the
estimatoris quitelarge.In particular, thelastcoefficientsof* , which have small values,arepoorly estimated.For this
reason,searchingfor a vector * with reducedlengthgener-
ally enablesa goodcompromisebetweenbiasandvariance
propertiesof theestimator.

However, performingthedeconvolutionwith atruncated
waveletwill generatedegradatedperformancefor thereflec-
tivity sequence.

Improved ARMA(G (T= ) wavelet estimation In orderto
improvethedeconvolutionperformance,weassumethatthe
MA( / ) wavelet model that hasbeenestimatedby means
of the SEM proceduredescribedin the previous sectionis
in fact a truncatedversionof the true wavelet, of length/�Í¡ÎÏ/ . The valueof / is not muchcritical. Simply, the
envelopeof theMA( / ) impulseresponseshouldnot decay
toomuch.An efficientapproachfor choosing/ is described
further in the text. Since /fÍ can be quite large in prac-
tice and,often, the wavelet hasan oscilatoryshape,it can
bemodeledefficiently asanARMA( G (?= ) impulseresponse.
In orderto estimateit from the initial MA( / ) wavelet,we
proposeto usethe Prony method[2]. More precisely, let-
ting � ��j}� representsthetransferfunctionof theARMA( G (?= )
modelto beestimated,wehave

� ��j}�L�	� �Ð ���.� t
Ñ Ð j " Ð �¼�w@ $ ��-���.� ÇgÒ � j "�� � "�� m (10)
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Then,thecoefficients Ói�Ï� Ò ���?�-���-� Ç and Ôy�Ï� Ñ Ð � Ð �q�¼� t are
obtainedby minimizing thefollowing quadraticcriterion:

Õ �>Ó�(�ÔL��� �)Ö� Ð �q� e
Ç��-���%Ò � � Ð "�� J Ñ Ð e 8 ( (11)

wherewe note
Ñ Ð �¯B for b Î×= . Straightforwardcalcula-

tionsshow that �
V
Óg(
V
ÔL� �F\¿]?^�_©§�Ø)Ù¿� Ú Õ �>Ó�(�ÔL� is givenbyV

Ó£�	J�����Û� ���¼� "q� ��Û�xÜ (
V
Ô��N���
�²@

V
ÓQ� � � (12)

where

���z�
ÝÞÞÞ
ß �

� B à¼à.à B
� � � � à¼à.à B
...

. . . m m
�páâ� t "q�ãà¼à.à � t ")Ç

äæååå
ç

� � �
ÝÞÞÞ
ß � t � t "��èà¼à¼à � t "QÇ¼é��� t "�� � t " 8 m m

... à.à¼à . . . m
�pá � t "��èà¼à¼à � ��" t

äæååå
ç

Ü �	� � t é��I(.m¼m.m¼( � � � (?�2JR=nÎ G m

(13)

In orderto estimatetherespective ordersG and = of the
AR andof the MA parts,we usea Kurtosismaximization
criterion[10].

Initial MA model order selection Now, let usexplain
how thelength / of theinitial êHÌë��/~� waveletcanbecho-
sen. Denoting

V
* � ��µn� b �I(¼m�m�m²( b 8 � the estimatedwavelet of

length µ and

V
*3ìk�í� b 8 J b �©JÂ@#� "q� � Ð �� � Ð �

V
*�î , we noteïê<ðLÆ � � ­ ¬* � J ¬*3ñ ­ 8 . Comparing

ïò×óqô �,� ïê<ð Æ � � � � Ð � � Ð �and
ò×óqô �C�>ê<ðLÆ � � � � Ð � � Ð � , where ê<ð Æ � � ­ ¬* � Jy* ­ 8

(seeFigure4),showsthatagoodchoicefor / is obtainedby
consideringtheminimumof

ïò×óqô
.

Initialization It is well known that the non-minimum
phasestructureof thewaveleth makesits estimationcom-
plicated.In particularthewaveletestimationis notrobustto
initialization. A simulatedannealingversionof theSAEM
algorithm could be usedto overcomethis problem [11].
Here,weproposeanalternativedeterministicprocedurefor
initializing theMA( / ) waveletestimate.As in [11], we ini-
tialize h with thevector * �

� � ( µs�½@¿(.m¼m¼m¼(T»}� ) thathas0 en-
tries,exceptthe µ ¶ � one,whichis equalto 1,andweperform
the deconvolution for eachµ . Now, let õ � �5@ if

V
* � is in-

creasingat the origin and õ � �öJD@ if it decreasesat the
origin. It can be checked that ÷ø�ø�>õ � � � ��� � � � � changes
of sign at valuesof µ correspondingto the truewavelet lo-
cal optima(Figure3). Theretainedsolutionis theonethat
maximizesthe Kurtosisof estimatedreflectivity

V
0 at such

points.
Deconvolution When* hasbeenestimated,thelaststep

consistsin adeconvolutionviaanMPM approachthatyields
thefinal estimateof thereflectivity sequence[14].

5. RESULTS

In this section,we presentan examplefor simulatedand
real data. Figure1 and2 representthe simulatedreflectiv-
ity andobservation ( 7�89 �ù@¿m B "pú , MH�ûBQm²@ , 7�8� �ù@.B "pú ,7�8� �üB)m�@ ). The true wavelet and the function ÷ intro-
ducedin the previous sectionaregiven in Figure3, whileò×ógô

and
ïò×ógô

aregivenin Figure4. Table1 andFigure
3 show that the maximumposition is correctly recovered
with theproposedprocedure.Figure5 shows the improve-
mentbroughtby the MA truncatedwavelet + ARMA ex-
tensionmodelizationcomparedto a directestimationof the
full lengthwavelet.Figures6 to 9 show theresultsobtained
for realdata(Zaiangocampaign,Ifremer [13]). We get re-
spectively ­ � J

V
*ëý

V
0 ­ 8 � 2.3and0.93for theMA( /fÍ ) and

MA( / )+ARMA( G (?= ) waveletsestimates,which shows the
higherdeconvolutioncapabilityof theproposedmethod.
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Figure1: simulated
reflectivity sequence.
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Figure 2: simulated noisy
seismicdata.SNR=10dB.
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,
’...’:

ïòÏóqô
.

maximumposition 4 9 12 16
candidates(Fig.3)

kurtosis 0.0079 0.0351 0.0217 0.0070

Table1: estimatedkurtosisat changesof ÷ .
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Figure5: estimatedwaveletfor SNR=10dB.
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Figure6: registeredseismictracedgþ 602.
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Figure 7: ’- -’: initial esti-
mateof * , ’...’: ÷
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Figure9: estimatedwavelet.

6. CONCLUSION

In thispaper, wehaveproposedanew approachfor blind es-
timationof long impulseresponseandnon-minimumphase
wavelets.
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